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a b s t r a c t

Quantifying continental sediment flux is a fundamental goal of earth-system science. Ongoing
measurements of riverine-suspended sediment fluxes to the oceans are limited (o10% of rivers) and
intrabasin measurements are even scarcer. Numerical models provide a useful bridge to this
measurement gap and offer insight to past and future trends in response to human and environmental
changes. BQART is a global empirical model that calculates long-term suspended sediment loads. The
Psi statistical model accounts for intra- and interannual variability in these BQART sediment flux
predictions. Here BQART and Psi are compiled as a new module of the WBMplus global daily water
balance/transport model, a central component in the FrAMES hydrological–biogeochemical modeling
scheme. The resulting model (WBMsed) simulates spatially and temporally explicit (pixel scale and
daily) sediment fluxes over continental Earth. We test WBMsed predictions with (1) observed sediment
loads at 95 river mouths and to the original BQART predictions for these rivers, and (2) 11 years of daily
sediment flux observations of 11 USGS stations. The results show that WBMsed captures the multiyear
average, interannual and intraannual trends but considerably over- and underpredict daily fluxes for
extreme discharge periods. These over- and underpredictions are mainly driven by respective
mispredictions of water discharge fluxes. Future improvements to WBMsed to address these limitations
are provided.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Global sediment dynamics is a key feature of planet geology,
biogeochemistry (e.g., landscape evolution, carbon cycle;
Syvitski and Milliman, 2007; Vörösmarty et al., 1997a,b), and
human-related activities (e.g., water quality, infrastructure;
Kettner et al., 2010). Spatially and temporally explicit descrip-
tions of continental sediment fluxes provide a framework for
studying a multitude of processes and drivers affecting our
environment (e.g., deforestation, climate change, soil produc-
tion, and erosion; Cohen et al., 2008a, 2009, 2010). Unfortu-
nately sediment measurements are limited. Ongoing sediment
fluxes to the oceans are measured for less than 10% of the Earth’s
rivers (Syvitski et al., 2005b) and intrabasin measurements are
even scarcer (Kettner et al., 2010).

Numerical models can fill the gap in sediment dynamic
measurements (e.g., Syvitski et al., 2005b; Wilkinson et al.,
2009) and offer insight into future and past trends in response

to environmental and human changes (e.g., climate change;
Kettner and Syvitski, 2009). Simulating global riverine sedi-
ment fluxes is a challenging quest as a variety of diverse
processes act on the weathering of soil and rock in different
parts of the world (Cohen et al., 2010), and its cascade to the
coastal oceans or other inland sedimentary basins. Simulating
global sediment fluxes become even more challenging when
intrabasin predictions are warranted. To avoid simulation
discontinuities, a comprehensive global fluvial sediment pre-
dictor is desired as river basins cover wide-ranging climatic and
geologic zones.

Syvitski and Milliman (2007) compiled a global model
(BQART) based on a dimensional analysis of the key operating
variables that express the empirical relationship among basin
geomorphic (area and relief), hydrologic (discharge), climatic
(temperature), geologic (lithology and ice cover), and human
(reservoir trapping and soil erosion) characteristics and long-
term suspended sediment loads for 66% of the global land
surface. The BQART model was trained on a database of 294
river basins (M&S92þ; Milliman and Syvitski, 1992) to calculate
sediment loads to the oceans and compared to observed sediment
loads of 488 rivers (the M&F05 database; Syvitski and Milliman,
2007). With a bias of only 3% and R2 of 0.95 Syvitski and Milliman
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(2007) show that the model can be applied successfully (on average
within 738% of the observed fluxes) to a set of very diverse rivers
that range across orders of magnitude in area, discharge, and
sediment flux. The BQART model was incorporated into a basin-
outlet model HydroTrend v.3.0 (Kettner and Syvitski, 2008). Hydro-
Trend v.3.0 predicts daily sediment fluxes using the Psi variability
model (Morehead et al., 2003) to distribute the BQART long-term
average loads.

Although used in intrabasin applications by individually
simulating subbasins (i.e., Kettner et al., 2010; McCarney-
Castle, 2011), HydroTrend/BQART is a point scale (river mouth)
model and therefore cannot explicitly predict riverine flow-
path sediment fluxes. To address this limitation, we extend
BQART as a spatially distributed global-scale suspended sedi-
ment flux model. We compile the BQART and Psi models as a
module of the WBMplus global daily water balance/transport
model (Wisser et al., 2010a). TheWBMplus model was chosen in
this regard as it provides a spatially and temporally explicit
(pixel-scale and daily, respectively) modular modeling platform
that readily includes about half the input datasets needed to
operate BQART and Psi.

The new model (termed WBMsed) predictions are validated
here by:

(1) A comparison to observed long-term average sediment loads
at 95 global river mouths and the original BQART calculations
for these rivers.

(2) A comparison to 11 years of daily suspended-sediment flux
observations of 11 USGS hydrological stations over the con-
tinental United States.

The results show that WBMsed can well predict long-term
average sediment flux and can capture intraannual and inter-
annual trends (R2 of 0.54 for average monthly predictions) but
tend to over- and underpredict daily sediment fluxes mainly due
to mispredictions of water discharge.

All models described in this paper are freely available
through the CSDMS (Community Surface Dynamics
Modeling System) model repository (http://csdms.colorado.edu/
wiki/Model_download_protal).

2. Modeling architecture

The WBMsed model (Fig. 1) is a spatially and temporally
explicit (pixel-scale and daily) implementation of the BQART
river-mouth sediment load model (Syvitski and Milliman,
2007). The WBMplus global hydrology model provides a
spatially and temporally explicit modeling platform offering
many of the desired input datasets. WBM (Vörösmarty et al.,
1989) was probably the first hydrological model applied to a
global domain. Its most recent version WBMplus is built in
the Framework for Aquatic Modeling of the Earth System
(FrAMES), a multidisciplinary hydrological/biogeochemical
modeling scheme. Perhaps the main difference between
WBMplus and comparable large-scale hydrological models is
the high degree of flexibility in terms of specifying both
computation domains or input data and configuration. For
instance, potential evapotransporation calculation alone
has nine implementations ranging from a simple air tempera-
ture-driven Hamon (1963) function to more complex
land cover-dependent approaches (Federer et al., 1996;
Vörösmarty et al., 1998). WBM has a demonstrated bias with
5–8 mm/year (Vörösmarty et al., 1998; Fekete et al., 2002)
with respect to annual runoff (297 mm/year; Fekete et al.,
2002). Numerous studies have shown that the most critical
input variable is precipitation (Fekete et al., 2004; Biemans
et al., 2009).

The large-scale distributed implementation of BQART in
WBMsed is based on the assumption that each point in space
(pixel) is a local river mouth (an outlet of its upstream
contributing area). WBMsed therefore needs to dynamically
calculate the basin-average parameters of BQART (e.g., tem-
perature, discharge, relief) for each pixel. WBMsed, in its
current configuration, does not explicitly model sediment
transport, which means that it is not a mass conservative
sediment model. Following Kettner and Syvitski (2008; the
HydroTrend v.3.0 model), WBMsed uses the Psi model
(Morehead et al., 2003) to predict a ‘‘representative’’ daily
sediment flux based on the long-term average BQART predic-
tions. By representative we mean that the Psi model is used to
provide typical instantaneous values to reflect a river draining a
similar basin (geography, geology, discharge).

Nomenclature

Ws soil moisture (mm)
Ep potential evapotranspiration (mm d!1)
Pa precipitation (mm d!1)
Dws soil moisture deficit (mm)
Wc available water capacity (mm)
a empirical constant set to 5.0 (dimensionless)
g(Ws) a soil function (dimensionless)
Qin input flow (m3 s!1)
Qout released water from the river segment (m3 s!1)
c1 c2 c3 Muskingum coefficients (dimensionless)
Qs long-term average suspended sediment load (kg s!1)
o coefficient of proportionality (dimensionless)
Q long-term average water discharge (m3 s!1)
A upstream contributed area (km2)
R maximum relief of upstream area (km)
T average temperature (1C)
B a term accounts for geological and human factors

(dimensionless)
I glacial erosion factor (dimensionless)

L lithology factor (dimensionless)
TE reservoirs sediment trapping factor (dimensionless)
Eh human-influenced soil erosion factor (dimensionless)
Qs suspended sediment flux (kg s!1)
Q water discharge (m3 s!1)
c[i] describes a lognormal random distribution

(dimensionless)
C(a) normally distributed annual rating exponent

(dimensionless)
E mean of the c[i] lognormal random distribution

(dimensionless)
s standard deviation of the c[i] lognormal random

distribution (dimensionless)
F
!

spatially averaged model parameter (parameter
dependent)

Fi a parameter value in a contributing pixel (i) to Fn

(parameter-dependent)
Pi pixel area (km2)
F temporally average model parameter(parameter

dependent)
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2.1. Core infrastructure

FrAMES is a spatially and temporally explicit multiscale (local
through global) hydrological/biogeochemical modeling scheme
(Wollheim et al., 2008). It is an ongoing interdisciplinary project
allowing predictions of changing material flux from major con-
tinental rivers in response to changing environmental conditions.

The primary purpose of the FrAMES structure is to separate
core modeling components (model I/O, advancing simulation in
space and time) from the actual implementation of the simulated
processes. FrAMES facilitates user-defined processes on arbitrary
topologically linked computational objects, while advancing in
time. User-defined processes can request input variables and
define computed output variables. Computational objects could
map to a vector of grid cells (the typical FrAMES application),
points, or polygons. FrAMES offers sequential operations and
carries out model I/O at each computational time step to update
variables specified as boundary conditions. FrAMES executes the
user-defined processes on each computational object, while
ensuring that variables defined as output from one process are
passed to processes using that variable as input. FrAMES main-
tains a list of defined variables during model simulations and
carries out the input and output as needed.

The topology defined on computational objects allows rudi-
mentary object-to-object operations carried out by FrAMES.
Currently, only tree topology is implemented, linking upstream
object to the next downstream object. Tree topology provides the
basis for the routing operation.

The model modules are defined on single computational
objects that are called by FrAMES repeatedly, while advancing
in space. FrAMES operates on a list of computational objects that

are specified at runtime. These computational objects could
represent a series of irregular points, cells of regular or irregular
grids, or polygons from a vector coverage. FrAMES handles
computational objects in the same manner regardless of their
type (from FrAMES perspective any computation domain is just a
vector of computational objects). FrAMES offers a limited set of
object-to-object operators (e.g., routing along tree hierarchy or
calculating finite differences), which requires object topology
(e.g., downstream object for tree hierarchy or the neighbors for
finite differences).

2.2. The WBMplus model

The FrAMES enables the water balance/transport model first
introduced by Vörösmarty et al. (1989, 1998) and subsequently
modified by Wisser et al. (2008, 2010a). At its core the surface
water balance of nonirrigated areas is a simple soil moisture
budget expressed as

dWs=dt ¼

"gðWsÞðEp"PaÞ ParEp

Pa"Ep EpoParDws

Dws"Ep DwsoPa

8
><

>:
ð1Þ

driven by g(Ws) is a unitless soil function

gðWsÞ ¼
1"eð"aðWs=Wc ÞÞ

1"e"a
, ð2Þ

and Ws is the soil moisture, Ep is the potential evapotranspiration,
Pa is the precipitation (rainfall Pr combined with snowmelt Ms), and
Dws is the soil moisture deficit, the difference between available
water capacity Wc, which is a soil- and vegetation-dependent

Fig. 1. Schematics of the WBMsed model. WBMsed uses several preexisting WBMplus modules and functions (discharge, reservoirs capacity, and contributing area) and
input datasets (temperature, ice cover, and population). The remaining functions and datasets are new.
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variable (specified externally), and the soil moisture. The unitless
empirical constant a is set to 5.0 following Vörösmarty et al.
(1989).

Potential evopotranspiration can be simulated in various ways
by WBMplus, ranging from a simple air temperature drive
method to more complex land cover-dependent energy balance
calculations (Federer et al., 1996; Vörösmarty et al., 1998). In this
study we used the Hamon equation (Hamon, 1963) that was
found to have the least bias in a wide range of climate regions
(Federer et al., 1996).

Irrigation is treated separately as a function of irrigated land
within each computational grid cell. Wisser et al. (2008, 2010b)
provide a detailed description of the calculation of irrigational
water demand that ultimately alters the water balance at the
grid-cell level. Irrigational water demand is obtained from four
sources: (1) small reservoirs, (2) shallow groundwater, (3) nearby
rivers, and (4) unsustained deep aquifers.

Small reservoirs are unique to WBMplus and represent small
farm ponds that are not captured individually, but as a bulk
storage term within each grid cell that contains irrigated land.
Small reservoirs are fed by the local runoff generated on the
nonirrigated portion of the grid cell, providing freshwater, if
available, for irrigation. The mechanism of the small reservoir
implementation is discussed in detail in Wisser et al. (2008).

Excess water from surface balance calculation partly forms
surface runoff and partly recharges a runoff detention pool
representing shallow groundwater aquifers that release water
via an exponential decay function. Both the groundwater release
and the surface runoff are propagated horizontally along the
prescribed river channel.

Flow routing from grid to grid cell following downstream grid-
cell tree topology (which only allows conjunctions of grid cells
upstream, without splitting to form islands or river deltas) is
implemented using the Muskingum-Cunge equation, which is a
semi-implicit finite difference scheme to the diffusive wave
solution to the St. Venant equations (ignoring the two accelera-
tion terms in the momentum equation) expressed as a linear
combination of the input flow from current and previous time
steps (Qin t!1, Qin t) and the released water from the river segment
in the previous time step (Qout t!1) to calculate new grid-cell
outflow:

Qout t ¼ c1Qin tþc2Qin t21þc3Qout t21: ð3Þ

The Muskingum coefficients (c1, c2, c3) are traditionally esti-
mated experimentally from discharge records, but their relation-
ships to channel properties are well established. We use a power
function approximation of channel geometry w¼ayb, expressing
the relationship between the river width (w) as a function of flow
height (y) from the river bottom. Exponent b dictates the ratio of
flow velocity and flood wave celerity. Detailed descriptions are
provided in Wisser et al. (2010a).

2.3. The BQART and Psi models

In this global study the BQART model is applied to simulate
long-term (30þ years) average suspended sediment loads (Qs) for
each grid cell

Qs ¼oBQ
0:31

A0:5RT for TZ23C, ð4aÞ

Qs ¼ 2oBQ
0:31

A0:5R for To23C, ð4bÞ

where o is a coefficient of proportionality that equals 0.02 for
units of kg s!1, Q is the long-term average discharge for each cell,
A is the basin upstream contributed area of each cell, R is the
relative relief difference between the highest relief of the con-
tributed basin to that cell and the elevation of that particular cell,

and T is the average temperature of the upstream contributed
area. The B term accounts for important geological and human
factors through a series of secondary equations and lookup tables,
and includes the effect of glacial erosion processes (I), lithology
(L) that expresses the hardness of the rock, and human impact
that incorporates both a trapping sediment due to man-made
reservoirs (TE) and a human-influenced soil erosion factor (Eh)
(Syvitski and Milliman, 2007)

B¼ ILð12TEÞEh: ð5Þ

The smallest temporal resolution of the WBMplus model is a
daily time step. Therefore the Psi Eq. (6) is applied to the long-
term sediment flux estimated by applying BQART (Eqs. (4a) and
(4b)) to resolve sediment flux on a daily time step. A classic way
to calculate daily suspended sediment flux would be by applying
Qs¼aQ1þb (Ferguson, 1987); however Morehead et al. (2003)
developed the Psi equation such that the model is capable of
capturing the intra- and interannual variability that natural river
systems have

Qs½i'
Qs

! "
¼c½i'

Q½i'
Q

! "CðaÞ

, ð6Þ

where Qs[i] is the sediment flux for each grid cell, Q[i] is the water
discharge leaving the grid cell, c[i] describes a lognormal random
distribution, [i] is revering to a daily time step, and C(a) is a
normally distributed annual rating exponent (Syvitski et al.,
2005a) with

EðcÞ ¼ 1, ð7aÞ

sðcÞ ¼ 0:763ð0:99995ÞQ , ð7bÞ

EðCÞ ¼ 1:420:025Tþ0:00013Rþ0:145lnðQsÞ, ð7cÞ

sðCÞ ¼ 0:17þ0:0000183Q , ð7dÞ

where E and s are, respectively, the mean and the standard
deviation. Eqs. (7a)–(7d) are reflecting the different variability
behavior of various sizes of river systems, where large rivers with
high discharges tend to have less intraannual variability in
sediment flux than smaller systems (Morehead et al., 2003).

2.4. The WBMsed model

Of the BQART and Psi input parameters simulated by WBMsed,
three are temporally static (Eqs. (4a), (4b), and (5)): drainage area
(A), maximum relief (R), and lithology factor (L). Area is calculated
by summation of pixels sizes upstream. Pixel size is calculated with
the WBMplus MFModelGetArea function where a drainage network
input defines the stream flow routing. Maximum relief is an input
dataset calculated with a GIS package by subtracting the maximum
elevation of the upstream drainage basin for each pixel by its local
elevation. The lithology factor is averaged for each pixel’s upstream
contributing basin derived from an input lithology factor map.
Pixel-explicit basin averaging is calculated in WBMsed by

Fn
!
¼
Pn

i ¼ 1 FiPi

An
, ð8Þ

where F
!

is the spatially averaged model parameter for a pixel
with n number of contributing pixels, F is the value of that
parameter in a contributing pixel i, Pi is that pixel area, and A is
the total drainage area to pixel n.

WBMsed uses the WBMplus daily discharge (Q[i]) predictions (the
MDDischarge.c module) both for the Psi equation (Eqs. (7a)–(7d)) and
to derive long-term average discharge (Q ) for each pixel (Eqs. (4a)
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and (4b); Fig. 1). Temporal averaging is calculated in WBMsed by

Ft ¼
Pt

j ¼ 1 Fj

t
, ð9Þ

where F is a temporally average model parameter after t number of
time steps (days in this model) and F is the parameter value in time
step j.

The model uses temperature time-series maps (describe pixel-
scale variation in temperature) to simulate basin average tem-
perature (T; Eqs. (4a) and (4b)). WBMsed averages these input in
space and time (Eqs. (8) and (9), respectively).

A glacier cover input map is applied in WBMsed to set the glacial
erosion parameter (I; Eq. (5)). For the human soil erosion factor (Eh)
WBMsed uses population time-series maps and a Gross National
Income (GNI) input map. WBMsed averages these two parameters
in space (Eq. (8)) and updates them during the simulations.

The reservoir sediment trapping parameter (TE) is based on
Kettner and Syvitski (2008; HydroTrend v.3.0 model) and
described in detail there. WBMsed uses reservoir capacity time
series input maps for large reservoirs and the WBMplus small
reservoirs capacity calculations (the MDSmallReservoirCap.c mod-
ule) to determine trapping efficiencies. The trapping parameter is
spatially averaged and temporally updated during the simulation.

The two long-term average parameters (discharge and tem-
perature) are calculated in a separate module (MDBQARTprepro-
cess.c) to reduce the model runtime. This module temporally sums
discharge and temperature in each pixel and exports these to two
corresponding output maps. These two maps are then used as
input in the main module (MDSedimentFlux.c) to calculate long-
term average discharge and temperature (Q and T, respectively;
Eqs. (4a) and (4b)). This approach allows the user to calculate
these two parameters only once for each simulated domain rather
than resimulate them in each simulation.

3. Validation

Model predictions are evaluated by:

(1) A correlation analysis between predicted (by WBMsed and
BQART) and observed (M&F05 database) long-term average
sediment loads obtained at 95 coastal river mouths. This
analysis is primarily intended to test the distributed imple-
mentation of BQART in WBMsed against its point-scale origin
(Syvitski and Milliman, 2007). For this validation we use a
global-scale simulation at a 0.51 spatial resolution.

(2) A comparison between predicted and observed daily sedi-
ment fluxs (1997–2007) at 11 USGS hydrological stations
across the United States. This comparison will help evaluate
the WBMsed predictions in both space and time. For this
validation we use a simulation of continental North America
at a 0.11 spatial resolution.

3.1. Simulation input datasets

Below we provide a summary of the datasets used for the
simulations presented. The datasets source name (e.g., NCEP),
listed below, corresponds to its name on the CSDMS High
Performance Computer Cluster (HPCC) server. All the datasets
below (and more) are available to registered users of the CSDMS
HPCC. Registration is free at http://csdms.colorado.edu.

The following datasets were compiled by the University of
New Hampshire and City College of New York as part of the
WBMplus development (described in more detail in Wisser et al.
(2010a,b)):

(1) Air temperature—NCEP—daily time steps, 1948–2009, 11
spatial resolution (Kalnay et al., 1996; Kistler et al., 2001);

(2) Precipitation—GPCCfull—monthly time steps (with supple-
mentary daily fraction dataset), 1901–2007, 0.51 spatial
resolution.

(3) Flow Network—PotSTNv602 for global and PotSTNv120 for
North America simulations—static, 0.51 and 0.11 spatial
resolution, respectively (Vörösmarty et al., 2000).

(4) Soil parameters—WBM-FAO soil map1 combined terrestrial
ecosystem model vegetation (Melillo et al., 1993) and
croplands (Ramankutty and Foley, 1999) with WBM para-
meterization (Vörösmarty et al., 1998)—static, 0.11 spatial
resolution.

(5) Growing season start—computed-CRUþFAO—computed
from CRU air temperature using FAO guidelines (Wisser
et al., 2008)—static, 0.51 spatial resolution.

(6) Irrigation area fraction—GMIA—from Global Map of Irri-
gated Areas2 obtained from International Water Manage-
ment Institute (IWMI) that was extended to be a time series
data set by Wisser et al. (2008)—annual time steps, 1900–
2009, 0.11 spatial resolution.

(7) Irrigation intensity and efficiency—Dwisser—assigned to
the irrigation area fraction according to FAO guidelines
(Allen et al., 1998)—static, 0.51 spatial resolution.

(8) Reservoir capacity—UNH661—based on Vörösmarty et al.
(1997a, b)—annual time step, 1900–2008, 0.11 spatial
resolution.

(9) Small reservoir storage fraction—GMIAderived—derived
form GMIA (Wisser et al., 2010b)—annual time step,
1901–2008, 0.11 spatial resolution.

(10) Crop fraction—SAGE—from Ramankutty and Foley
(1999)—static, 0.51 spatial resolution.

(11) Ice Cover—ICE5Gv102—static, 0.51 spatial resolution.
(12) Population—HYDE-CIESIN—annual time steps, 1960–2015,

0.51 spatial resolution.
The following datasets were newly complied for the
WBMsed model:

(13) Maximum relief (R)—the difference between the maximum
(hinterland) and minimum (outlet) elevation for each pixel.
Minimum elevation is the local elevation derived from a
DEM (ETOPO1). Maximum elevation for each pixel is
determined with the PsHIC (pixel-scale hypsometric inte-
gral calculator; available at: /http://csdms.colorado.edu/
wiki/Model:PsHICS) model (Cohen et al., 2008b) using the
PotSTN network for flow direction and ETOPO1 for
elevation—static, 0.11 spatial resolution.

(14) Lithology factor (L)—Syvitski and Milliman (2007) con-
verted the Dürr et al. (2005) global lithology map to a
lithology factor map—static, 0.11 spatial resolution.

(15) GNI—a global country-scale Gross National Income map for
the year 2000 obtained from the World Bank.

3.2. Global long-term average sediment loads

The implementation of the BQART model in WBMsed requires
a more spatially and temporally explicit calculation of the model
parameters compared to its point-scale origin (i.e., Syvitski and
Milliman, 2007; Kettner and Syvitski, 2008; see Section 2.4). In
this validation procedure we test how this spatially explicit
calculation has affected the model predictions by comparing
WBMsed long-term average sediment loads (Qs; Eqs. (4a) and

1 http://www.fao.org/ag/agl/agll/wrb/soilres.stm.
2 http://www.iwmigiam.org/info/main/aboutGMLULC.asp.
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(4b)) to the original BQART results as well as to observed
sediment loads from the M&F05 database (Syvitski and
Milliman, 2007). Syvitski and Milliman (2007) used the M&F05
database to test the BQART model and found a very strong
correlation (R2¼0.97) between BQART-predicted and M&F05-
listed sediment loads. For this study 95 out of the 488 rivers of
M&F05 were selected based on: (1) drainage basin size larger than
2500 km2 (pixel size limitation) and (2) rivers that have a
discrepancy of less than 10% between M&F05-listed and
WBMsed-calculated drainage area (used as indication of
geographic fit).

Fig. 2 shows a global map of WBMsed-predicted long-term
average (1948–2007) suspended sediment load. Overlaying this
map are the WBMsed-predicted, BQART-calculated, and M&F05-
observed long-term average suspended sediment loads (at a
logarithmic scale) for the 95 rivers at their outlet (the M&F05
subset). Fig. 3 is a corresponding sediment yield map calculated

by dividing sediment load by upstream contributing area
and Fig. 4 is a long-term average water discharge map. Overall
the WBMsed predictions correspond well to observed sediment
loads. Three regions are uniformly underpredicted by WBMsed:
East Asia, the Mediterranean basin, and northwestern North
America. Other poorly predicted rivers are sporadically distribu-
ted around the globe (e.g., the Volta River, West Africa, and the
Penner River, east India). The BQART predictions better match the
M&F05-listed observed sediment loads at almost all of the 95
river mouths (two clear exceptions are the Yenisei and San
Francisco rivers in north Asia and eastern South America,
respectively).

Correlation analysis between the two models and observed
sediment loads (Fig. 5) quantifies the above observations.
WBMsed generally underpredict long-term suspended sediment
load with a moderate correlation (R2¼0.66) to observations
(Fig. 5(a)). The correlations between WBMsed and BQART

Fig. 2. Long-term (1948–2007) average suspended sediment load (kg s"1) map (0.51 spatial resolution), overlaying with point predictions/observations (on a logarithmic
scale) by WBMsed, BQART, and M&F05 for 95 selected river-mouth locations.

Fig. 3. Long-term (1948–2007) average suspended sediment yield (T km2 year"1) map (0.51 spatial resolution).
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predictions are stronger with a R2 of 0.77 (Fig. 5(b)). BQART yields
a very strong correlation to observed long-term loads (R2¼0.96;
Fig. 5(c)), which corresponds to the results of Syvitski and
Milliman (2007) with the whole M&F05 database.

A detailed correlation analysis between WBMsed and BQART
predictions is determined to investigate the sources of the bias
(Table 1). The results indicate that the B parameter (Eqs. (4a),
(4b), and (5)) is the main source of bias between the models. The
low correlation in the B parameter (R2¼0.1) can be explained by
the different ways in which its factors (ice cover, lithology factor,
trapping coefficient, and human influence; Eq. (5)) are deter-
mined in the two models. The lithology factor (L) was approxi-
mated in BQART (Syvitski and Milliman, 2007) for each river basin
while in WBMsed it is explicitly calculated for each pixel based on
its contributing area. The trapping coefficient (TE) in BQART was
evaluated for each basin based on a global dam map while in
WBMsed we use the spatially and temporally dynamic calculation
of reservoir capacity of the WBMplus model. The human influence
parameter (Eh) is a somewhat arbitrary threshold between popu-
lation density and GNI. In Syvitski and Milliman (2007) this
parameter is fixed in time and basin-averaged (a basin is either
erosive (Eh¼2), less erosive (Eh¼0.3), or neutral (Eh¼1)) while in
WBMsed it is spatially explicit (calculated for each pixel and
averaged based on its contributing area) and temporally dynamic
(time varying population data). The underpredictions in eastern
Asia seem to relate to this factor as the significant increase in
China’s (and other south-east Asian countries) GNI in the last
decade has moved this part of the world from an erosive region in

BQART (high population density and low GNI) to a largely neutral
region (high population density with moderate GNI).

Average water discharge (Q ; Eqs. (4a) and (4b)) is moderately
correlated (R2¼0.70; Table 1). This moderate correlation between
long-term average discharge prediction by the WBMplus model
and M&F05-listed values (used in BQART in Syvitski and Milliman,
2007) can potentially be a reliable description of the model’s
discharge prediction accuracy. However, this also highlights the
embedded uncertainties in the M&F05 dataset. M&F05 is, by far,
the best and most comprehensive global river database. However
the dataset is inevitably based on multiple sources with varying
measuring (or estimation) techniques and time spans resulting in
a potentially considerable degree of uncertainties. This is parti-
cularly true for long-term average values as most rivers have
often only limited, short-term observations publically available.

3.3. North America daily suspended sediment fluxes

WBMsed daily sediment and discharge flux predictions are
compared to observations from 11 USGS hydrological stations
(Table 2) across the continental United States (Fig. 6). The hydro-
logical stations were selected by querying the USGS ‘‘Water Data for
the Nation’’ website (http://waterdata.usgs.gov) for those with
continued daily measurements between 1997 and 2007 and a
drainage area larger than 100 km2 (pixel size limitations for this
regional simulation). Although most stations are concentrated in
the central part of the United States, they do represent a wide range
of hydrologic and climatic regions. Seven stations are located in the
Mississippi River basin ranging from an upstream station draining
190 km2 (Yahara River at Windsor, WI) to a lower Mississippi
station draining approximately 3"106 km2 (Tarbert Landing, MS).
The northernmost station is located at 46.81 latitude (Clark Fork,
MT) and the southernmost at 37.21 latitude (Tarbert Landing, MS).

For this comparison a daily WBMsed simulation of North
America between 1997 and 2007 with a spatial resolution of
0.11 is used. When averaged, the 11 years daily suspended
sediment and water discharge predictions strongly correlate to
observed loads (Fig. 7). This shows that for these 11 locations
WBMsed can accurately predict multiyear average discharge and
sediment fluxes, albeit a few outliers. This is an encouraging
indication of the model multiyear average prediction capabilities
and its spatially distributed implementation.

Fig. 4. Long-term (1948–2007) average water discharge (m3 s#1) map (0.51 spatial resolution).

Table 1
Correlation between parameters of Eqs. (4a), (4b), and (5) with the original BQART
model calculations (Syvitski and Milliman, 2007) and the WBMsed predictions for 95
rivers at the river mouth (subset of the M&F05 global river database).

Parameter R2

Q (discharge) 0.70
Area 0.99
Relief 0.84
Temperature 0.94
B 0.10
Lithology 0.22
Te (trapping) 0.04
Eh (human) 0.11
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As described in Section 2.3, the Psi model (Eqs. (6) and
(7a)–(7d)) is capable of capturing the intra- and interannual
variability of natural rivers. It is not designed to accurately
capture time series of daily sediment fluxes rather to represent
a typical instantaneous value. The c[i] parameter includes a daily
lognormal random variable that can lead to daily sediment load
predictions ranging more than two orders of magnitude at the tail
ends of the lognormal distribution. This implies that WBMsed can
realistically predict a range of daily sediment fluxes rather than a
single value. Fig. 8 demonstrates this by plotting the extreme

range in daily sediment flux predictions as a function of the Psi
daily random variable for one station (no. 3, Mississippi River at
Chester, IL; Fig. 6 and Table 2). The time series in Fig. 8 compare
the observed and predicted daily sediment flux (blue and red
dots, respectively) and show the model daily sediment prediction
range (gray error bars).

Fig. 9 shows the daily discharge and sediment flux-time
series for all 11 stations. For clarity it does not include the
model sediment flux prediction range demonstrated in Fig. 8.
Overall WBMsed captures the interannual and intraannual

Fig. 5. Comparison of long-term (1948–2007) average sediment load for 95 rivers at the river mouth (M&F05 subset) for (a) WBMsed-predicted and M&F05-observed;
(b) WBMsed-predicted and BQART-calculated; and (c) BQART-calculated and M&F05-observed.
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trends in water discharge and sediment fluxes. Daily sediment
predictions show a considerably higher degree of scatter com-
pared to observations. The model tends to considerably over-
and underpredict sediment flux in high and low discharge
periods, respectively. Daily sediment flux results of station nos.
8 and 11 (Fig. 9) should be considered with some reservation as
they drain relatively small areas, generating average annual
water discharges below 30 m3 s!1, well below the validated
minimum water discharge that was used to establish the BQART
long-term sediment relation (Syvitski and Milliman, 2007).
These smaller streams inevitably represent different sediment
erosion, deposition, and transport processes, which are not
entirely captured with BQART. This might be the reason why
for station number 11 the sediment is actually less under-
predicted than most other stations. Fig. 9 shows that sediment

flux over- and underpredictions are strongly driven by water
discharge over- and underpredictions, respectively.

Codependence between discharge and sediment predictions is
also evident from the regression analysis between observed and
predicted daily, monthly, and yearly averages summarized in
Table 3. Stations with below average R2 for discharge (0.38 for
daily) result in below average R2 for sediment as well (0.29 for
daily). In addition, stations draining small contributing area
(469,000 km2; Table 2) yield a below average R2 while stations
with large contributing area yield a much better fit between
observed and predicted discharge and sediment (except for station
no. 5).

Quality of fit between observed and predicted discharge and
sediment is considerably higher for monthly and yearly averages
(average R2 of 0.57 and 0.54 for monthly average for discharge and

Table 2
Characteristics of 11 USGS hydrological stations (Fig. 6) used to validate WBMsed daily sediment and discharge fluxes.

Map
ID

Name USGS site
number

USGS site coordinates
lat/long (dd)

WBMsed point coordinates
lat/long (dd)

USGS site drainage
area (km2)

WBMsed point
drainage area (km2)

1 Mississippi River at Tarbert Landing, MS 7295100 31.00/91.62 31.05/91.65 2913 477 3206 630
2 Mississippi River at Thebes, IL 7022000 37.21/89.46 37.25/89.55 1847 179 1841 230
3 Mississippi River at Chester, IL 7020500 37.90/89.83 37.85/89.85 1835 265 1828 800
4 Mississippi River at St. Louis, MO 7010000 38.62/90.17 38.65/90.15 1805 221 1798 620
5 Missouri River at Nebraska City, NE 6807000 40.68/95.84 40.65/95.85 1061 895 1056 940
6 Illinois River at Valley City, IL 5586100 39.70/90.64 39.75/90.65 69264 69450
7 Skunk River at Augusta, IA 5474000 40.75/91.27 40.75/91.25 11168 11202
8 Yahara River at Windsor, WI 5427718 43.20/89.35 43.25/89.35 190 179
9 San Joaquin River near Vernalis, CA 11303500 37.67/121.26 37.65/121.25 35058 22772

10 Sacramento River at Freeport, CA 11447650 38.45/121.50 38.45/121.55 Not listed 69457
11 Clark Fork at Turah Bridge near Bonner, MT 12334550 46.82/113.81 46.85/113.85 9430 9471

The stations name, USGS number, USGS coordinates, and USGS drainage area are obtained from the USGS ‘‘Water Data for the Nation’’ (http://waterdata.usgs.gov).

Fig. 6. WBMsed-predicted average suspended sediment load for 2007 (0.11 spatial resolution) over continental North America and the selected 11 USGS hydrological
stations used for validation (Table 2).
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sediment, respectively) relative to daily predictions (Table 3),
particularly for stations with larger contributing areas.

4. Discussion

The first validation procedure (Section 3.2) analyzes the extent
to which WBMsed explicit parameter calculations have affected
the model’s predictions compared to the original point-scale
BQART calculation. The results show that WBMsed predictions
are moderately correlated to BQART-calculated and M&F05-listed
sediment loads (R2 of 0.77 and 0.66, respectively; Fig. 3). The
model’s physical parameters (area, relief and temperature) are
well correlated (R2 of 0.99, 0.84, and 0.94, respectively; Table 1) to
their original values in BQART (Syvitski and Milliman, 2007),
while the more qualitative or temporally dynamic parameters
(lithology factor, trapping efficiency and human erosivity) are
poorly correlated (R2 of 0.22, 0.04, and 0.11, respectively). Even
though a more explicit calculation of the model parameters is
typically expected to improve its accuracy, the empiricism of the
BQART equations will inevitably better correspond to the dataset
used to compile it. We therefore expect that a recalibration of the
BQART equation based on the explicit WBMsed parameter calcu-
lations will improve the fit between predicted and observed long-
term average sediment loads.

The second validation procedure (Section 3.3) analyzes
WBMsed temporal and spatial capabilities by comparing daily
discharge simulations and sediment flux predictions against mea-
sured fluxes across the continental United States (11 USGS sta-
tions). Strong correlations between 11 years average predicted and
observed sediment and discharge flux (Fig. 7) suggest that
WBMsed can well predict multiyearly average sediment loads. It
also indicates that it can well predict inland spatially distributed
suspended sediment loads, similar to those found by Kettner et al.
(2010). The correlation between observed and predicted average
sediment loads is much stronger in this analysis relative to the
global-scale comparison against the M&F05 dataset (R2 of 0.97
compared to 0.66). Even though we only compare 11 locations for
this analysis with a smaller geographic spread, the observed data in
this case is much more robust as the M&F05 database is based on a
wide variety of sources with varying measurement durations. The
USGS stations used are also independent of the BQART calibration
of Syvitski and Milliman (2007). This increases our confidence in
the explicit implementation of the BQART equations in WBMsed
and suggests that a recalibration of the BQART equation may not be

required for this kind of spatially explicit application (as suggested
in first river-mouth analysis).

WBMsed was able to capture the interannual and intraannual
fluctuations in water discharge and suspended sediment fluxes
(Fig. 9 and Table 3) but considerably over- and underpredicts
daily sediment fluxes during peak and low discharge periods,
respectively. We identify two possible causes of these over and
underpredictions: (1) the Psi model capabilities (Fig. 8), and
(2) the model’s water discharge predictions. We test these
sources of bias by calculating daily sediment flux for station
no. 3 and no. 9 (Fig. 6 and Table 2), using USGS-observed water
discharge (Fig. 9(3) and (9)) for Q[i] in Eq. (6). Using observed,
rather than model-predicted, water discharge eliminates most of
the model underpredictions and much of its overpredictions
(Fig. 10). It, however, still shows a considerable degree of scatter
compared to observed daily fluxes. The correlation between
observed and predicted sediment flux improves dramatically
for both stations (3b and 9b in Table 3) from R2 of 0.39 to 0.68 in
station no. 3 and from 0.12 to 0.67 in station no. 9 for daily
sediment fluxes. This shows that improving the model daily

Fig. 7. Comparison between WBMsed-predicted and USGS-observed mean (a) suspended sediment and (b) water discharge between 1997 and 2007. The numbers
correspond to the USGS station ID in Table 2 and Fig. 6. Dotted line represents the 1 to 1 line.

Fig. 8. Daily sediment flux time series for station no. 3 (Mississippi River at
Chester, IL; Fig. 6 and Table 2). The gray error bars represent the maximum rage of
the Psi daily predictions as a function of it lognormal random parameter (Eqs. (6)
and (7a)–(7d)). (For interpretation of the references to color in this figure, the
reader is referred to the web version of this article.)
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water discharge predictions will considerably improve its sus-
pended sediment flux predictions; however, the Psi model still
generates a considerable degree of scatter.

5. Conclusions

Results of the two validation procedures (long-term average
and daily comparison) lead us to conclude that WBMsed can

Fig. 9. Eleven years (1997–2007) daily time series of water discharge (top plots) and suspended sediment (bottom plots) fluxes for each of the 11 USGS hydrological
stations (title numbering corresponds to Fig. 5 and Table 2). USGS-measured fluxes are displayed in blue and WBMsed-predicted in red. In some plots a small portion
(o1%) of predicted daily fluxes are not displayed in favor of a smaller plotting range on the y-axis. No discharge observations were available for station no. 1. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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well predict multiyearly average sediment flux over diverse geo-
graphical settings. This shows that the spatially explicit imple-
mentation of the BQART model in WBMsed (assuming that each
pixel is an outlet of its upstream contributing area) is robust and
that WBMsed can be applied to study long-term sediment trends.

Analysis of daily sediment predictions led us to conclude that
the main source of bias is the simulated water discharges. When
observed water discharge was used as input, sediment predic-
tions were improved considerably. However, even with observed
discharge WBMsed daily sediment predictions are scattered.

Fig. 9. (continued)
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This led us to conclude that the Psi modeling approach (used in
WBMsed to extract short-term sediment fluxes from long-term
average fluxes) might be less suitable for daily sediment
predictions.

The results also indicate that WBMsed predictions are less
reliable for smaller catchments (below 69,000 km2).

These limitations can be addressed by first improving WBMsed
water discharge predictions and later by revisiting the Psi
approach. We believe that extreme over- and underpredictions
of water discharge can be addressed by introducing a flood plain
reservoir component. This approach, currently being tested, will
store water from the river when discharge exceeds bankfull and
gradually return it when water recedes. More explicit modeling of
sediment cascade by a sediment-transport modeling approach
will potentially improve the model’s daily predictions addressing
the Psi model limitations.
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