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Summary Soil erosion models have advanced in recent years, by becoming more physi-
cally-based, with better representation of spatial patterns. Despite substantial progress,
fundamental difficulties in catchment scale applications have been widely reported.
In this paper, we introduce a new catchment scale soil erosion model. The model is
designed for catchment interface and management purposes by: (1) using relatively com-
mon input data; (2) having a modular model structure; and (3) a clear and easily interpret-
able output analysis, by producing possibility or potential, rather than quantitative erosion
maps. The model (named: FuDSEM; fuzzy-based dynamic soil erosion model) is spatially
explicit and temporally dynamic and is formalized and based on fuzzy-logic equations.
FuDSEM was initially evaluated on a small data-rich catchment and was found well
calibrated. It was then implemented on a medium-sized heterogeneous catchment in
central Israel. Initial evaluations of the medium-scale model predictions were conducted
by: (1) comparison of FuDSEM runoff predictions against measured runoff from five
hydrological stations and (2) a site specific evaluation of the FuDSEM multi-year erosion
prediction in two sub-catchments. FuDSEM was compared with two other erosion models
(a temporally static version of itself and a known physically-based model). The results show
the advantages of FuDSEM over the other two models in evaluating the relative distribution
of erosion, thereby emphasizing the benefits of its temporally dynamic and fuzzy structure.
ª 2008 Elsevier B.V. All rights reserved.

Introduction

Soil erosion modelling is an important tool for viable conser-
vation of natural, agricultural and built-up environments.
Catchment-scale erosion modelling is particularly desirable,
since it facilitates more efficient soil conservation planning
(De Jong et al., 1999) by providing spatial data over large
areas, data that may be used to decrease erosion related
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problems (Jetten et al., 2003). The potential of such models
for environmental management and planning organizations
is clear, but most state-of-the-art soil erosion models are
difficult to apply over large areas, due to intensive labour
and detailed data requirements (Merritt et al., 2003).

Several large scale erosion models, such as WEPP (Near-
ing et al., 1989), EUROSEM (Morgan et al., 1992), LISEM (De
Roo et al., 1996), EROSION3D (Schmidt et al., 1999) and
MEDRUSH (Kirkby and McMahon, 1999) have been reported
and examined. Despite their important contribution to
understanding, quantifying and predicting soil erosion, most
models do not reliably predict erosion yield over large het-
erogeneous areas (Trimble and Crosson, 2000). The most
prominent reasons for this lack of reliability are: (1) insuffi-
cient input data with high spatial and temporal resolution
(De Jong, 1994); (2) inefficient calibration (Folly et al.,
1999); and (3) uncertainty associated with model parame-
ters (De Roo, 1998). Moreover, few erosion models have
been developed to continuously simulate the erosion pro-
cess over long periods, mainly because they do not include
temporally dynamic variables such as vegetation growth
and groundwater dynamics (Jetten et al., 1999).

In recent years, a variety of models that address some of
the problems described above have been published. For
example, SEDEM (Van Rompaey et al., 2001) uses the empir-
ical RUSLE as a simple erosion rate platform in a spatially
distributed model and is intended to address low-detail dis-
tributed data in large catchments. Despite its simplicity,
the model accurately calculates sediment delivery, but
the empirical RUSLE requires intensive calibration.

Temporally dynamic erosion calculation has been ad-
dressed by a variety of landscape evolution models, such
as SIBERIA (Willgoose et al., 1991), GOLEM (Tucker and
Slingerland, 1994), LAPSUS (Schoorl et al., 2000), CHILD
(Tucker et al., 2001) and CAESAR (Coulthard et al., 2002).
Such landscape evolution models successfully simulate the
spatial and temporal distribution of sediment, but are usu-
ally complicated to operate and analyze; moreover, de-
tailed input data and outstandingly powerful computers
are required.

To address some of the problems associated with conven-
tional modelling, several erosion models have made use of
artificial intelligence (AI) technologies (Mitra et al., 1998;
Ahamed et al., 2000; Tran et al., 2002). AI has developed
rapidly in recent years, providing sophisticated tools to sim-
ulate complex environmental processes. Among AI technol-
ogies, one of the most promising is the Fuzzy-logic approach
(Openshaw and Openshaw, 1997).

Fuzzy-logic has proven to be a useful approach for
addressing problems associated with simulating complex
processes and environments in a variety of earth science
disciplines (Zhu et al., 1996; Tayfur and Singh, 2006; Svoray
et al., 2007). The prime advantages of fuzzy-logic are its
ability to represent and process uncertain data in the form
of moderately continuous classes (Metternicht, 2001); to
efficiently model processes with indeterminate boundaries
(Burrough, 1996); and to facilitate more flexible knowl-
edge-based modelling developments (Tran et al., 2002).
These capabilities enable fuzzy-logic to deal with imprecise
and uncertain data and relationships (Mitra et al., 1998),
allowing modellers to reduce inherent dependencies on
empirical features when designing a model.

In soil sciences, fuzzy-logic is traditionally used to im-
prove the spatial classification of various soil futures, such
as soil stability (Burrough et al., 1992). Soil erosionmodelling
has also been addressed with fuzzy-logic in a variety of pro-
cedures and to various degrees. Some studies have used the
proven ability of fuzzy-logic in spatial classification of soils
to improve the spatial characteristics of a given model, such
as the USLE (Ahamed et al., 2000). Others have modified a
model (e.g. the RUSLE) to fit the fuzzy-logic approach (Tran
et al., 2002), thereby improving its performance and over-
coming issues of uncertainty, while increasing model flexibil-
ity and realistic description of the relationships between its
parameters. Fuzzy-logic algorithms have been successfully
employed in several hydrological watershed management
studies (Tayfur et al., 2003). They have also been used for
designing a simple catchment-scale soil erosion model (Mitra
et al., 1998) which has proved to be useful in applications
with low quality inputs. Most of the related studies have indi-
cated that fuzzy-logic is a flexible and easy-to-apply ap-
proach, a vital benefit for both modelers and end-users.

The need for further improvement of fuzzy-logic-based
erosion modelling is noted in many publications. The advan-
tage of using fuzzy-logic for erosion modelling was sug-
gested in the discussion of the MEDRUSH, physically-
based, catchment-scale model (Kirkby and McMahon,
1999). More relevant, a simple fuzzy-logic sediment trans-
port model was compared to a physically-based model;
the results demonstrate the superiority of the latter, show-
ing that fuzzy-logic, despite its various advantages, cannot
replace a physically-based model (Tayfur et al., 2003).
Therefore, a need arises for the development of a more
physically-based fuzzy-logic model.

To address these issues, we have designed a simple and
easy to apply catchment-scale soil erosion model, based
on physical principles. The model, named FuDSEM (fuzzy-
based dynamic soil erosion model) has been designed to as-
sist catchment management and planning. This has been
achieved by: (1) simulating soil erosion processes utilizing
known principles; (2) using a fuzzy-logic structure to reduce
calibration requirements and simplify the output analysis;
and (3) using accessible input data, thus minimizing pre-
processing.

FuDSEM runoff and erosion predictions were validated in
a small data-rich catchment, before implementation in a
medium-scale and heterogeneous catchment. The med-
ium-scale predictions were examined by: (1) comparing
the runoff component to measured channels flows and (2)
comparing the model’s erosion predictions against those
of two other erosion models in a well-surveyed area.

Modelling approach

Model framework

Fuzzy-logic is a theory in formal mathematics that enables a
definitive solution to be obtained for problems that are
complex, uncertain and unstructured (Bojorquez-Tapia
et al., 2002). A general fuzzy system is composed of three
primary elements: fuzzy sets, membership functions (MFs)
and fuzzy production rules. A fuzzy set (A) may be defined
as follows (Burrough et al., 1992):
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For each A ¼ fx; lAðxÞg x 2 X ð1Þ

where X = {x} is a finite set of points and lA(x) is a member-
ship function of x in A.

The membership function describes the variable’s mem-
bership assigned to A and, therefore, it may quantify the
influence of the variable x on the predicted phenomenon,
as it is grasped by the developer (Burrough and McDonnell,
2000). To integrate the effects of a number of variables, sev-
eral membership functions can bemerged in a variety of joint
membership functions (JMF). Both membership and joint
membership functions provide a simple membership grade
in a range of 0–1, where 1 is full membership and 0 is no
membership. Here, we use the term ‘potential’ to describe
this mathematical grade, using more process-related termi-
nology. For example, runoff potential means that the mem-
bership grade has a high possibility of runoff development.

In general, FuDSEM predicts the hillslope soil erosion po-
tential for each day that exceeds a user-defined precipita-
tion depth value in a meteorological database. It is based

on the infiltration excess runoff mechanism (Hortonian) on
hillslopes, with emphasis on the temporal dynamics of this
process. FuDSEM divides the erosion process into a sequence
of four sub-routines including (Fig. 1): (1) antecedent condi-
tions of soil moisture; (2) runoff generation; (3) transport
capacity; and (4) soil erosion. Using fuzzy-logic, each sub-
routine is calculated by an individual JMF that combines
the relevant parameters (represented by membership
functions).

FuDSEM is executed as follows:

(1) Soil moisture potential (JMF1) is explicitly calculated.
(2) Runoff potential (JMF2) is calculated by considering

the soil moisture potential.
(3) Runoff potential is spatially accumulated, based on

digital elevation model (DEM) data.
(4) Runoff transport capacity potential (JMF3) is calcu-

lated, based on the accumulated and in situ runoff
potential.

Figure 1 FuDSEM flow chart. FuDSEM operates in daily intervals divided into four sub-routines, each calculated by a distinct JMF.
All model parameters are represented in membership functions, converting their values into a membership score assigned to the
relevant set. JMF1 represents the cell soil moisture potential that acts as input parameter in JMF2, the cell runoff potential. The cell
runoff potential is spatially accumulated, based on a flow direction layer. The original and accumulated runoff potential acts as
input parameters in JMF3 calculation, the runoff sediment transport capacity. JMF3 acts as an input parameter in the final sub-
routine, the calculation of a cell’s erosion potential (JMF4). After producing the erosion potential map, FuDSEM advances to the next
day on the database and recalculates the four sub-routines with the new values.
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(5) Soil erosion potential (JMF4) is calculated, based on
the transport capacity potential.

(6) The model proceeds to the next day in the meteoro-
logical database, until we reach the last day in the
wet season.

These sub-routines are detailed in the following sections.
The functions and weights used in FuDSEM are the out-

come of generalized interpretation of common knowledge
of erosion processes. Unlike standard, physically-based
models, the weights are not intended to represent an accu-
rate quantitative relationship between the parameters, but
to provide a general interpretation of the process, as envis-
aged by the modeller (Baja et al. 2002; Robinson 2003). This
is acceptable, since the model predicts the potential of the
parameters, thus representing its relative spatial and tem-
poral distribution, rather than providing a quantitative
prediction of erosion yield. Therefore, the relationships be-
tween the parameters (i.e. functions and weights) are not
directly linked to a specific study, but were chosen through
a combination of information taken from the relevant liter-
ature and expert knowledge.

Soil moisture potential (JMF1)
Antecedent soil moisture conditions are an important
parameter in runoff generation. They may vary considerably
over time (Jetten et al., 1999), especially in semi-arid envi-
ronments characterized by scattered rainfall events. FuD-
SEM estimates soil moisture conditions by linking four
parameters: (1) time elapsed from the previous rainfall
event (Te); (2) wetness index (WI; Barling et al., 1994);
(3) hillslope aspect (SA); and (4) soil field capacity (FC).
The membership functions assigned to the parameters in
this sub-routine represent the membership score for the
high soil moisture conditions set (A1). The membership
score of Te assigned to A1 is calculated, using the ‘left
shoulder sigmoidal’ membership function (Robinson, 2003;
Fig. 2d) generally described by

lAi ¼
1

1þ ebðx$aÞ ð2Þ

where a is the mid membership value of x and b is the func-
tion slope. The left shoulder sigmoidal function was chosen
on the basis of the exponential ratio in soil moisture de-
crease with time (Hillel, 1998). The function parameters

(a and b listed in Table 1), were estimated, based on expert
knowledge.

The hillslope aspect represents the influence of solar
radiation flux on soil moisture as a function of aspect azi-
muth. In the northern hemisphere, south-facing slopes are
commonly less humid, due to higher solar exposure (Oli-
phant et al., 2003). Therefore, the SA membership score as-
signed to A1 increases as a function of radial distance from a
180! aspect azimuth. Based on Svoray et al. (2004), the
membership score of SA assigned to A1 was calculated using
a sigmoidal membership function (Urbanski, 1999; Fig. 2b)
generally described by the following equation:

lAi ¼ cos2
ðx $ PminÞ
ðPmax $ PminÞ

p
2

! "
ð3Þ

where x is the input value and Pmax and Pmin are the maxi-
mum and minimum values of the variable x. The function’s
parameters (Pmax and Pmin), listed in Table 1, are based on
the values reported in Svoray et al. (2004).

Figure 2 Schematics of four membership functions used in
FuDSEM: (a) linear (Robinson, 2003); (b) sigmoidal (Urbanski,
1999); (c) left shoulder sigmoidal (Robinson, 2003); and (d)
right shoulder sigmoidal (Robinson, 2003).

Table 1 Summary of FuDSEM parameters, membership function types and membership function coefficients

JMF Factor Membership function type a b Pmin Pmax

1. Wetness index Sigmoidal 0 0.32
Aspect Sigmoidal 0 360
Field capacity Linear 6.1 42
Time Left shoulder 2 1

2. Infiltration Excess Sigmoidal 0 2000
Rain depth Sigmoidal 0 40
NDVI Linear 0 0.95

3. Accumulation Linear 0 10
Slope Right shoulder 30 0.1

4. K-index Linear 0.33 0.52
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The wetness index is a widely used equation, based on
division of the cell slope by its contributing area

WIi ¼ Ln
Asi

tan bi

! "
ð4Þ

where As is the upper drainage area of a given cell (i) in m2

and b represents the gradient of the cell in degrees (Barling
et al., 1994). Natural logarithms are used to avoid the large
numbers that may be produced in large drainage areas. High
WI values indicate a higher membership score assigned to the
set A1. The WI membership score assigned to A1 is calculated
by a mirror version of the sigmoidal membership function
(Urbanski, 1999), generally described by Eq. (5)

lAi ¼ cos2
ðx $ PmaxÞ
ðPmax $ PminÞ

p
2

# $
ð5Þ

The function parameters (Pmax and Pmin), listed in Table 1,
are based on the values reported in Svoray et al. (2004).

The effect of soil characteristics on soil moisture is rep-
resented by the field capacity of the soil in each cell. The
water holding capacity of the soil varies considerably with
soil texture, organic matter content and other physical
characteristics (Hillel, 1998). Thus, high FC values increase
the cell membership assigned to the set A1. Based on De
Jong (1994) and Svoray et al. (2004) the membership score
is described by a mirror version of the linear membership
function (Robinson, 2003; Fig. 2a) generally described by
the following equation:

lAi ¼ $
Pmin $ x

Pmax $ Pmin
ð6Þ

The function parameters (Pmax and Pmin) are simply the max-
imum and minimum values of the database.

The JMF, combining the soil moisture potential parame-
ters, is formulated with the ‘No Trade Off’ (NTO) convex
combination JMF (Urbanski, 1999) generally described by

JMF ¼
Xm

j¼1
kjlAj

 !

^
Xn

j¼1
kjlAj

 !

ð7Þ

where k1,. . .,n are the weights of the membership functions
and ^ is the minimum between the two groups of member-
ship functions. This operator was chosen on the assumption
that if sufficient time has passed since the last rainfall
event, the top soil will dry out regardless of any other
parameters. Under these conditions, the dominant parame-
ter influencing the soil moisture potential is Te; thus, if
Te = 0, then JMF1 = 0. The weight assigned to Te in the
JMF is double that of the other parameters, due to its
important role in the moisture loss process in semi-arid re-
gions. All the other parameters were assigned an equal
weight, under an assumption of equal contribution to the
soil moisture potential. The final soil moisture potential
JMF is presented in the following equation:

JMF1 ¼
0:0 Te ¼ 0

0:4Teþ 0:2SAþ 0:2FCþ 0:2WI Te > 0

%
ð8Þ

Runoff potential (JMF2)
The daily runoff potential is simulated only in cells with
infiltration excess. Cells with no excess infiltration are as-
signed a zero runoff potential. Calculating the runoff poten-

tial for a cell with excess infiltration is undertaken by
joining four parameters: (1) soil moisture potential
(JMF1); (2) excess infiltration (IE); (3) daily rainfall depth
(RD); and (4) vegetation cover (NDVI – normalized differ-
ence vegetation index; Tucker, 1979).

The membership functions assigned to the parameters in
this sub-routine represent the membership score of the set
of highest runoff generation potential (A2). The value of
JMF1 represents the cell membership assigned to A2, under
the assumption that high soil moisture content increases the
possibility for runoff generation.

Excess infiltration is calculated by subtracting the satu-
rated hydraulic conductivity of the soil from the daily rain-
fall intensity. The mirror version sigmoidal membership
function (Urbanski, 1999; Eq. (5)) is used to convert the
excess infiltration values into the membership score as-
signed to A2, based on the relationship described in Moody
and Martin (2001) and Valmis et al. (2005). The function
parameters (Pmax and Pmin), listed in Table 1, are simply
the maximum and minimum values of the database.

Based on the relationship reported in USDA-SCS (1985),
the membership score of daily rainfall depth of A2 is de-
scribed by the mirror version sigmoidal membership func-
tion (Urbanski, 1999; Eq. (5)).

Vegetation cover affects runoff generation by decreas-
ing raindrop energy and increasing its infiltration rate (Yair
and Kossovsky, 2002; Calvo-Cases et al., 2003). Vegetation
cover in semi-arid regions is characterized by patchy and
heterogeneous distribution, creating a high spatio-tempo-
ral variability in water redistribution along the hillslopes
(Svoray and Shoshany, 2004). Based on FAO (1967), the
membership score of NDVI assigned to A2 is calculated
by a linear membership function (Robinson, 2003;
Fig. 2a), which is generally described by the following
equation:

lAi ¼
Pmax $ x

Pmax $ Pmin
ð9Þ

Combining the four membership functions, the calcu-
lation of the overall runoff potential is carried out with
the NTO JMF (Urbanski, 1999; Eq. (7)), in order to introduce
IE as a threshold parameter. As mentioned above, negative
or zero IE values yield zero runoff potential. The weight as-
signed to NDVI is double the weight assigned to the other
parameters due to its importance in semi-arid environments
(Yair and Kossovsky, 2002). All other parameters were as-
signed an equal weight under the assumption of equal con-
tribution to runoff potential. The final runoff potential JMF2
is presented in the following equation:

JMF2¼
0:0 IE6 0

0:2IEþ0:2RDþ0:4NDVIþ0:2JMF1 IE> 0

%
ð10Þ

Transport capacity potential (JMF3)
The ability of runoff to transport sediments is influenced by
a variety of parameters, among them shear stress, vegeta-
tion cover and soil and topographic characteristics (Thor-
nes, 1980). The initiation of erosion and transport of
sediment by water is performed on hillslopes by unconcen-
trated runoff and by rill flow. Further downstream, it occurs
in and forms gullies and channels. No distinction is made be-
tween these in our FuDSEM model, which is acceptable in
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non-mechanistic models (Hillel, 1998). Three parameters
are linked to calculate the runoff transport capacity poten-
tial in the model: (1) runoff potential (JMF2); (2) runoff
accumulation (Acc); and (3) local slope decline (S). The
membership functions assigned to the parameters in this
sub-routine represent the membership score assigned to
the set with the highest runoff transport capacity potential
(A3). Runoff potential (JMF2) represents the cell member-
ship score of A3, under the assumption that a high value
of runoff increases cell transport capacity.

Runoff volume and transport capacity in a given cell are
influenced by the runoff generated in situ and by runoff
accumulated from its upslope contributing area. Accumula-
tion to a given cell (Acc) is influenced, not only by the con-
tributing area, but also by land cover characteristics of the
accumulating catchment. A cell with high runoff potential is
regarded as a source for the down-slope cells, while, by
contrast, a cell with low runoff potential is considered a
sink. Therefore, the runoff accumulation procedure is
important for describing the spatio-temporal dynamics of
runoff flow. The Acc membership function assigned to A3

is described by the mirror linear function (Robinson, 2003;
Eq. (6)).

Slope represents the effect of gravitational force on run-
off discharge. A steep slope increases runoff discharge,
resulting in a higher transport capacity. Based on De Jong
et al. (1999), we used the ‘right shoulder sigmoidal’ mem-
bership function (Robinson, 2003; Fig. 2c) to describe the
membership score of slope of A3, as follows:

lAi ¼
1

1þ e#bðx#aÞ ð11Þ

The parameters a and b (Table 1) were evaluated from the
results of a small pan experiment (Kirkby, 1980). Combining
the three membership functions to calculate the transport
capacity potential is undertaken with the ‘convex combina-
tion operation function’ (Burrough et al., 1992), which is
generally described by

JMF ¼ k1lAi
þ k2lAi

þ & & & þ knlAi
ð12Þ

The three parameters were assigned equal weights in the fi-
nal transport capacity potential JMF, under an assumption
of equal contributions to the process

JMF3 ¼ 0:33Sþ 0:33Accþ 0:33JMF2 ð13Þ

Soil erosion potential (JMF4)
The final sub-routine calculates the erosion potential by
assuming that in a specific transport capacity, the entrain-
ment of sediments is a function of topsoil erodibility: sedi-
ment entrainment and thus, erosion, are expected to
increase in more erodible soils. Therefore, the daily erosion
potential is calculated by linking the runoff transport capac-
ity (JMF3) with K, the soil erodibility index (Wischmeier and
Smith, 1978).

The membership functions assigned to the parameters in
this sub-routine represent the membership score to the
highest erosion potential set (A4). JMF3 represents the ef-
fect of high transport capacity on the overall erosion poten-
tial and K represents topsoil sensitivity to erosion. A high
value of erodibility results in higher erosion potential for gi-
ven runoff conditions. The membership score of K, assigned

to A4, is described by the mirror version linear membership
function (Robinson, 2003; Eq. (6)), based on Mitra et al.
(1998).

Combining the two membership functions to calculate
the erosion potential is undertaken with the ‘convex combi-
nation operation function’ (Burrough et al., 1992; Eq. (12)).
We assume that the transport capacity potential dominates
the final erosion calculation, so we assign it a considerably
higher weight than K. The erosion potential JMF is repre-
sented by

JMF4 ¼ 0:1K þ 0:9JMF3 ð14Þ

Data used

The Bikhra Catchment

Initial model validation was conducted on the small, data-
rich Bikhra Catchment (0.7 km2; Fig. 3) on the southern
flanks of the Hebron anticlinorium in central Israel. It is lo-
cated between a region of Mediterranean climate to the
west and north and the aridity of the Judean Desert to the
east and of the Negev to the south. Topographically, this
area is characterized by round limestone hillocks separated
by loess-clad valleys. Loess also covers most of the lower
hillslopes. The average annual rainfall is 240 mm, with con-
siderable temporal variation (the coefficient of variation for
most rain stations is larger than unity). Rainstorms may
either be frontal or convective: the convective storms are
spotty in nature (Sharon, 1972), occur most commonly in
spring and autumn, and may have very high intensities, such
as 200 mm/h for durations of 10–15 min (Sharon and Kutiel,
1986). The frontal, Mediterranean-derived cyclones are typ-
ically winter events of longer duration and lower intensities.
The soils covering the higher hillslopes are brown lithosols.
Colluvium has developed to a limy, stony sierozem at the
bottom of some hillslopes. Valley bottoms are loessial,
increasing in depth downvalley. Land use includes grazing
and overgrazing.

Suspended sediment concentrations were obtained from
a pre-programmed automatic 24-bottle water sampler
(ISCO) located at the crump weirs. The samplers are acti-
vated when flow occurs. Rating curves were derived sepa-
rately for rising and falling limbs of flow events and
suspended sediment yield for each event was calculated.
Although bedload fluxes are very high in semiarid environ-
ments, more than 92% of the sediment transported by flow
events is suspended (Powell et al., 1996). Accordingly and
taking into consideration the fact that the proposed model
mostly deals with sediment potential supply from hillslopes,
we used suspended sediment yield as a proxy for the total
yield.

The Shiqma Catchment

The Shiqma Catchment (785 km2 in size) is located in central
Israel (Fig. 3). The climate is semi-arid, characterized by
350 mm/yr mean annual rainfall, mostly occurring in win-
ter, between October and May (Goldreich, 1998). Rainfall
events in this area are typically short, with an average of
40 rainfall days per year. The storm regime is usually frontal
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and extremely variable, with relatively low intensities (FAO,
1967). The semi-natural vegetation of the catchment is
mainly natural grassland with scattered trees, shrubs and
dwarf shrubs (Shoshany and Svoray, 2002). The catchment’s
principal land use is agriculture, mainly wheat fields, as well
as some fruit plantations. A major source of sediments in
the Shiqma Catchment is channel and gully erosion, primar-
ily headwall gully retreat and channel incision (Seginer,
1966; Nir and Klein, 1974; Rozin and Schick, 1996).

Rainfall data

In the Bikhra study, rain gauge data from two consecutive
years (2002–2003) were used. Since it is a small catch-
ment, we assume spatial homogeneity. For the Shiqma
Catchment, daily rainfall data for three consecutive years
(1995–1998) were used. This database was obtained from

eight meteorological stations of the Israel Meteorological
Service, consisting of rainfall depth and maximum intensity
for a 30 min period for each rainy day. To represent the
spatial distribution of rainfall, the study area was divided
into eight regions, each represented by a single meteoro-
logical station. We used Thiessen polygons for the spatial
distribution of rainfall data, instead of the more commonly
used interpolation techniques (which are extremely labour
intensive for temporally explicit simulations), since our
simulation was based on a detailed rainfall database for
the entire catchment area.

Soil data

For the Bikhra study site, field capacity and saturated
hydraulic conductivity were calculated by averaging four
soil samples. For the Shiqma site, average texture data for
each soil unit were estimated on the basis of the relevant
literature (FAO, 1967; Dan, 1968; Ravikovitch, 1992). Based
on soil texture, we calculated the two physical soil charac-
teristics used by FuDSEM: field capacity and saturated
hydraulic conductivity using the water soil characteristics
software (Saxton, 2005). The USLE K-index was estimated
based on the soil erodibility table (Mitchell and Bubenzer,
1980). A digital soil map (Dan and Raz, 1970) was used to
spatially represent soil characteristics at both study sites.

Topographic data

The Hall and Cleave (1988) DEM from the Geological Survey
of Israel, with horizontal resolution of 25 · 25 m2 and verti-
cal resolution of 10 m, was used to create the slope, aspect
and WI layers in both catchments.

Vegetation cover data

NDVI was used to represent the vegetation cover of the
study area during the growing season. A series of four Land-
sat TM satellite images (from the following dates: 10
November 1996, 14 February 1997, 19 April 1997 and 21
May 1997) was used to calculate NDVI values for both catch-
ments. The temporal pattern of the 1996–1997 growing sea-
son was used for the entire series of multi-annual
simulations, each NDVI layer representing a specific period
of the season (for example the November 10 NDVI repre-
sents the spatial distribution of vegetation in simulation,
between October 1 and December 31). The Landsat images
were radiometrically and geometrically corrected using
common procedures (Svoray and Shoshany, 2003).

Model evaluation

Evaluating a distributed large scale soil erosion model has
long been acknowledged as difficult, primarily due to ab-
sence of reliable spatially distributed sediment data (Mer-
ritt et al., 2003). In order to address this issue, we used, as
described above, the small data-rich Bikhra catchment as
an initial case study, to validate our FuDSEM runoff and
erosion predictions. We then implemented the model on
the complex Shiqma Catchment and evaluated its predic-
tions by: (1) sensitivity analysis, comparing the FuDSEM

Figure 3 Study site: The Shiqma Catchment (785 km2) and
the Bikhra Catchment (0.7 km2).
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runoff component to daily runoff measurements and (2)
examining the FuDSEM erosion predictions in two surveyed
sub-catchments.

Small scale correlation analysis (the Bikhra study)

Runoff and suspended sediment load measurements at the
Bikhra outlet from 11 rainfall events were used to validate
FuDSEM. Runoff predictions were evaluated by calculating
the correlation between the average runoff potential
(JMF2) of the catchment and the measured runoff. Simi-
larly, the average erosion potential (JMF4) in each event
was compared to the measured suspended sediment load
at the catchment outlet.

Large scale runoff sensitivity analysis

One of the most commonly used hydrological measurements
applicable for large catchments is that of channel flow lev-
els. We used flow level measurements from five hydrological
stations across the catchment (Fig. 4) to evaluate the FuD-
SEM runoff potential predictions (JMF2). The five stations
are located in channels draining catchments for a wide
range of sizes (16–378 km2). Station flow was compared to
average FuDSEM runoff prediction. The correlation between
the predicted and measured runoff in each catchment was
evaluated and plotted. The outliers of this analysis were uti-
lized to conduct a sensitivity analysis of the FuDSEM runoff
component, by examining the model’s over- and under-
predictions.

Site-specific comparison

Two adjacent sub-catchments with considerable difference
in erosive characteristics were identified in a field survey of
the central Shiqma Catchment. The eastern sub-catchment

is characterized as erosive, due to deeply incised channels,
eminent headwall gully retreat and signs of fresh rilling on
the slopes. The western sub-catchment appears to be stable
and less erodible, as no signs of recent erosion activity were
observed. To validate and quantify this observation, the
drainage density evolution was calculated for both sub-
catchments. Drainage density evolution was monitored by
digitizing the catchments’ channel network on three dates
of observation (1945, 1970 and 2000), based on aerial pho-
tographs and GPS verification. Drainage density was calcu-
lated by dividing the overall channel length by the sub-
catchment area (Chow et al., 1988). FuDSEM’s three year
erosion potential predictions were calculated for the two
sub-catchments. The differences between model prediction
and drainage density were used to evaluate FuDSEM’s multi-
year erosion prediction for that region.

The FuDSEM predictions were also compared with two
erosion models: a temporally static version of FuDSEM (Fu-
SEM – fuzzy-based soil erosion model) and the soil erosion
model for Mediterranean regions (SEMMED; De Jong, 1994;
De Jong et al., 1999). FuSEM differs from FuDSEM only in
that it uses average rainfall values, excludes Ta and uses
only one NDVI layer (at mid-season – 14 February 1997) to
represent the vegetation cover. FuDSEM and FuSEM were
compared to better understand the influence of the tempo-
rally dynamic mechanism on multi-annual predictions.

SEMMED is a physically-based semi-empirical model, cal-
ibrated for Mediterranean regions. It is based on the MMF
(Morgan–Morgan–Finny; Morgan et al., 1984) approach
and was modified for regional scale, by using remotely
sensed data and GIS techniques (De Jong 1994; De Jong
et al., 1999). We used SEMMED as a comparison model, since
its input data are generally similar to those used by FuDSEM
(remote sensing and GIS data) and the model is designed for
Mediterranean regions. By comparing FuDSEM and SEMMED,
we hoped to show the benefits of a simple and relative ero-

Figure 4 The Shiqma Catchment and the five hydrological stations with their contributing drainage catchments. The numbers in
each drainage catchment represent its drainage area.
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sion prediction (i.e. FuDSEM) over a standard physically-
based soil erosion model.

Results and discussion

Small scale correlation analysis

The FuDSEM runoff potential prediction (JMF2) and erosion
potential predictions (final JMF) were regressed against
the corresponding measured runoff and sediment load in
the Bikhra catchment. The results are shown in Fig. 5a
and b, respectively. In this event-based analysis, the mea-
sured runoff and sediment data are viewed on a logarithmic
scale for comparison with the FuDSEM potential prediction
scale. Strong linear correlations are observed in n = 11 dif-
ferent events, distributed over two years (r2 = 0.79) in the
case of runoff and similarly (r2 = 0.76) in the case of ero-
sion/sediment analysis. These results allow us a consider-
able degree of confidence in the calibration of both the
runoff component (JMF2) and the final prediction of the
model. This outcome meant that we could apply FuDSEM
to the more complex, medium-scale Shiqma Catchment.

Large scale implementation

Fig. 6a shows FuDSEM’s three-year erosion potential map of
the Shiqma Catchment, calculated by averaging all pre-
dicted daily maps. This map was used to evaluate the spatial

distribution of FuDSEM output and compare it with the FuSEM
and SEMMED prediction maps (Fig. 6b and c, respectively).

Distinct differences appear between diverse parts of the
Shiqma Catchment (Fig. 6a). The eastern part of the catch-
ment was assigned the highest erosion potential, while the
lowest prediction values were scattered in clusters within
the center and western regions. These results are affected,
to some extent, by the spatial patterns of soil, as reflected
in the soil map. However, FuSEM’s output (Fig. 6b) neither
shows distinct spatial distributions, nor can it be linked to
the soil map. Moreover, its output map is considerably nois-
ier and less interpretable at the catchment management le-
vel. The SEMMED three-year erosion prediction (Fig. 6c) is
fundamentally different from the other two, since its values
are quantitative, whereas those of FuDSEM and FuSEM are
relative. From a catchment interface point of view, SEMMED
provides little knowledge about the spatial distribution of
erosion.

This qualitative comparison between the three maps re-
veals important differences between the three models.
From a catchment management standpoint, the continuous
representation of erosion (as provided by the fuzzy-based
models) seems to be a major advantage, providing a com-
parison between different parts of the catchment. The scat-
tered distribution produced by SEMMED appears to be less
useful for large scale environmental analysis, since identifi-
cation of variation in erosion within the catchment is more
complicated, requiring knowledge and experience in erosion
yield quantification and interpretation.

Runoff sensitivity analysis

The correlation plots between predicted and measured run-
off in the five hydrological stations are presented in Fig. 7.
The coefficients of determination in the three eastern sta-
tions (Beror-Hayil, Adorayim and Tel-Milha) are relatively
low, while in the western stations (Giah and Hanon), the
coefficients are considerably higher. This difference can
be attributed to variations in the stations’ drainage areas.
Generally, stations with a large drainage catchment (Ber-
or-Hayil with 378 km2 and Adorayim with 207 km2) have
low coefficients of determination, compared to smaller
drainage catchments (Giah with 16 km2 and Hanon with
48.5 km2). One exception to this finding is the Tel-Milha sta-
tion – despite its relatively small drainage catchment
(38 km2), it has a low coefficient of determination.

These results show a serious drawback in using large and
heterogeneous catchments as prime elements for valida-
tion. The explanation for this observation is that the empir-
ical outlet data represent the average/generalized value,
rather than reliably representing the diversity of conditions
in the sub-catchments. Though no rigid conclusions are
drawn from the five catchments, we used those stations
with a higher correlation (Giah and Hanon) to identify out-
lier days (i.e. under- and over-estimations). The meteoro-
logical properties of the outlier days and the physical
properties of the drainage catchments were thereafter
examined. Two main factors explain most of the outliers:
(1) the excess infiltration simulation in FuDSEM’s runoff
mechanism leads to several under-predictions. In days with
low to moderate rainfall intensity, FuDSEM predicted no
runoff generation in cells with high saturated hydraulic

Figure 5 Plots of (a) predicted mean FuDSEM runoff potential
versus measured runoff at the outlet of the Bikhhra catchment
on a logarithmic scale and (b) predicted mean FuDSEM erosion
potential versus measured sediment load at the outlet of the
Bikhra catchment on a logarithmic scale.
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Figure 6 Shiqma Catchment three-year erosion prediction maps of (a) FuDSEM, (b) FuSEM and (c) SEMMED.
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conductivity values (under the assumption that excess infil-
tration is the only runoff mechanism in the study area).
Apparently, this is not the case in all circumstances. All un-
der-predicted days were part of a continuing rainfall event
(i.e. the day preceding them was also rainy). This may indi-
cate that a saturation runoff mechanism may also occur in
this area. (2) Rainfall intensity simulation in FuDSEM’s run-
off mechanism seems to yield lower predictions on those
days, which may have led to over-prediction for low inten-
sity rainfall events. Due to the importance of rainfall inten-
sity on runoff mechanism in semi-arid environments, we
used it as a conditioning factor in FuDSEM’s runoff mecha-
nism (section ‘‘Runoff Potential (JMF2)’’).

Site-specific comparison

The measured drainage density evolution in the two sub-
catchments was used to validate and quantify the field sur-

vey observations. Table 2 summarizes those values, which
show that the western sub-catchment had a denser drainage
network in 1945 and 1970, compared to the eastern sub-
catchment (a ratio of 0.76 and 0.69, respectively); the ratio
shifted in the next 30 years to 1.54 in 2000. This result cor-
responds well with the field observation, in which we classi-
fied the eastern sub-catchment as presently being more
erosive. This result corresponds well with the findings at
the nearby Huga sub-catchment, extending over approxi-
mately the same time frame (Rozin and Schick, 1996). Rozin
and Schick showed that, as a result of reduction in grazing
and other agricultural activities (as observed in the western
sub-catchment), vegetation growth dramatically reduced
erosion and stabilized the channel network.

The average erosion prediction of the three models (FuD-
SEM, FuSEM and SEMMED), within the two sub-catchment
(Table 3), shows that FuDSEM was the only model to predict
higher erosion in the eastern sub-catchment, as compared

Figure 7 Plots of FuDSEM predicted runoff versus measured runoff at hydrological stations: (a) Adurayim, (b) Beror-Hayil, (c) Tel-
Milha, (d) Hanon and (e) Giah.
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to the western sub-catchment. The ratio between the east-
ern and western sub-catchments, in terms of average ero-
sion prediction by FuDSEM, FuSEM and SEMMED (1.25, 0.92
and 0.59, respectively; Table 3), shows the advantage of
FuDSEM over the other two models. These results also show
the advantage of FuSEM over SEMMED, indicating the superi-
ority of the fuzzy-based approach. The advantage of FuD-
SEM over FuSEM clearly demonstrates that a temporally-
dynamic structure is a crucial component for model accu-
racy in fuzzy modelling.

Conclusions

A strong correlation was observed between predicted runoff
and erosion potential by the FuDSEM model and measured
runoff and erosion/sediment in the small-scale data-rich
study of the Bikhra catchment. This finding gives consider-
able confidence in the model structure, thereby allowing
us to proceed to medium-scale implementation in the Shi-
qma Catchment. However, the comparison between mea-
sured and average runoff in five sub-catchments at Shiqma
reveals serious drawbacks in large scale runoff analysis. De-
spite this finding, the outliers of this correlation analysis
were used for a simple sensitivity analysis. Overestimation
was found for the infiltration excess sub-model (IE) and
underestimation in the case of rainfall intensity factor in
some rainfall conditions. Nevertheless, the results are sig-
nificant and these inaccuracies should be studied in future
research.

The comparison between the FuDSEM, FuSEM and SEM-
MED maps shows the advantage of the fuzzy-logic model
in representing spatial distribution of erosion. FuDSEM pro-
duces more continuous and easy to interpret maps, impor-
tant attributes for large scale interface management. The
site-specific comparison of drainage density between the
three models also demonstrates the advantage of FuDSEM,
the only model to accurately predict the differences be-
tween two surveyed sub-catchments. Keeping in mind the
limitation of this method, the findings validate the proposed
benefits of FuDSEM’s temporally dynamic and fuzzy-logic
structure.

Inherently, FuDSEM produces potential, qualitative ero-
sion maps, not quantitative erosion values. The advantages
of the qualitative maps for catchment management pur-
poses are: (1) continuous spatial distributions that are eas-
ier to interpret at large scales; (2) it may be easily
understood by laymen; and (3) it offers a clearer display
of erosion hot spots within a catchment. For engineering
purposes it is apparent that one of the traditional quantita-
tive erosion models should be utilized to analyse small sites
located by FuDSEM.

This work shows the potential of FuDSEM architecture in
representing the distribution of erosion possibility. So far,
the model has only been initially examined, but it demon-
strates the benefits of a fuzzy-logic based approach in a
mechanistic erosion model. Although showing considerable
potential, further validation and adjustments of FuDSEM
are required.
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