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[1] Hillslope surface armouring and weathering processes have received little attention in
geomorphologic and hydrologic models due to their complexity and the uncertainty
associated with them. Their importance, however, in a wide range of spatial processes is
well recognized. A physically based armouring and weathering computer model
(ARMOUR) has previously been used to successfully simulate the effect of these
processes on erosion and soil grading at a hillslope scale. This model is, however,
computationally complex and cannot realistically be applied over large areas or over long
periods of time. A simplified process conceptualization approach is presented (named
mARM) which uses a novel approach of modeling physical processes using transition
matrices, which is orders of magnitude faster. We describe in detail the modeling
framework. We calibrate and evaluate the model against ARMOUR simulations and show
it matches ARMOUR for a range of conditions. The computational efficiency of
mARM allowed us to easily examine time- and space-varying relationships between
erosion and physical weathering rates at the hillslope scale. For erosion-dominated slopes
the surface coarsens over time, while for weathering domination the surface fines over
time. When erosion and weathering are comparable in scale a slope can be weathering-
dominated upslope (where runoff and therefore erosion is low) and armouring-dominated
downslope. In all cases, for a constant gradient slope the surface armour coarsens
downslope as a result of a balance between erosion and weathering. Thus even for
weathering-dominated slopes the surface grading catena is dependent on armouring
through the balance between weathering and armouring. We also observed that for many
slopes the surface initially armours but, after some period of time (space- and rate-
dependent), weathering begins to dominate and the surface subsequently fines. Depending
on the relative magnitude of armouring and weathering the final equilibrium grading of
the slope may be finer or coarser than the initial conditions. The results demonstrate
the complexity of the evolution of surface grading and the balance between the armouring
and weathering processes. They also point toward inherent organization of surface grading
on the hillslope driven by erosion even for extremely high weathering rates. The
implications for natural landforms are discussed. We also plot and quantify, for the first
time, a log-log relationship between surface grading, contributing area and slope for a
range of weathering rates. The results show that this log-log relationship is robust, the
log-log scaling is constant in space, and true even for extreme weathering rates. This
has potentially important implications for soil geomorphology. It suggests that an
analytical solution can be found for soil grading catena. This might allow us to more easily
map soil distribution as a function of topographic characteristics.
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1. Introduction

'School of Engineering, University of Newcastle, Callaghan, New . . .
South Wales, Australia. [2] Armouring is the process of surface coarsening

2School of Environmental and Life Sciences, University of Newcastle, caused by removal of fine material from the top layer. Soil

Callaghan, New South Wales, Australia. armouring occurs when a mixture of fine and coarse
. ) ) . particles are exposed to overland flow which, over time,
Copyright 2009 by the American Geophysical Union. preferentially erodes the fine particles. When all transport-
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able material has been removed a stable armour layer is
formed. Consequently if the overland flow does not subse-
quently increase, the sediment transport, and thus erosion, is
reduced to zero. If the overland flow is higher than the
armour-forming flow the armoured layer may be either
further coarsened, or destroyed [Willgoose and Sharmeen,
2006].

[3] In contrast weathering is the breakdown and/or alter-
ation of rock and material near the earth surface. The overall
weathering process can be divided to two interrelated
processes: physical and chemical weathering. Physical
weathering is the breakdown of rock to smaller fragments
by mechanical processes such as abrasion by water, mineral
and ice creation, expansion and contraction due to temper-
ature fluctuations and biological activity. In chemical weath-
ering rock is usually dissolved, oxidized or reduced by a
variety of chemical reactions [Birkeland, 1974]. The overall
weathering process is an interaction between physical and
chemical weathering as physical weathering may depend on
chemical weakening of the rock and chemical weathering
acts on available fresh mineral surface exposed by physical
breakdown [Riebe et al., 2004]. Physical weathering is
believed to dominate the breakdown of large soil particles
at the surface [Yokoyama and Matsukura, 2006]. This
process influences the fine sediment availability and soil
grading which increase sediment transport [Sharmeen and
Willgoose, 2006]. This interaction creates the coupling
between erosion (armouring) and weathering. In this paper
we focus on physical, rather than chemical, weathering of
the particles on the soil surface. Therefore, unless otherwise
mentioned, we use the term ‘““weathering” to describe the
process of physical breakdown of rock or soil particles.

[4] The net effect of armouring on hillslope erosion and
weathering has generally been neglected in soil erosion and
landform evolution models despite the growing recognition
of its importance in erosion processes [Willgoose and
Sharmeen, 2006]. Most armour models are for river channel
beds. In those models the armour layer composition is
predicted either in a single step method or a time varying
simulation. For the single step models the prediction of the
final armour grading is based on probability [e.g., Gessler,
1970] or empirically derived equations [e.g., Little and
Mayer, 1976, Nouh, 1990; Parker and Sutherland, 1990].
In the time varying simulations armour evolution is calcu-
lated by the selective entrainment of the finer bed sediments
[e.g., Ashida and Michiue, 1971; Proffitt, 1980; Hoey and
Ferguson, 1994]. Willgoose and Sharmeen [2006] simulated
the effect of time-varying surface armouring on sediment
flux and erosion on hillslopes using a physically based
model (i.e., ARMOUR). ARMOUR, a one-dimensional
hillslope soil erosion model was used to simulate long-term
erosion and armour development in two contrasting mine
spoils; one cohesive, the other noncohesive.

[5] Armour evolution is also controlled by weathering.
Rock weathering literature is broad and deals mostly with
rock fragmentation mechanisms and size distribution for
applications different from that proposed here [Lerman,
1979; Klimpel and Austin, 1965; Robertson et al., 1997,
Green et al., 2006, Wells et al., 2006]. There is little
emphasis on weathering of surface material or long-term
simulations of its influence on erosion and landform evo-
lution. Sharmeen and Willgoose [2006] integrated a variety
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of physical weathering mechanisms into their ARMOUR
model. They used it to investigate the interaction between
weathering and armouring and the net effect on erosion and
surface soil grading. They found that the weathering rate
has a profound influence on the armour layer, sediment flux,
and erosion. A high weathering rate can prevent the creation
of an armour layer resulting in a “transport-limited”’ regime
in which the bed consists of an excess of fine transportable
material where sediment collects on the surface and runoff
has insufficient transport capacity to remove it. On the other
hand a low weathering rate may result in “weathering-
limited” regime in which the armour layer is fully devel-
oped (i.e., it is too coarse to be eroded) and the runoff can
only remove the fine material generated by weathering.
Sharmeen and Willgoose [2006] identified an interaction
between the two regimes (called ‘““weathering/transport
limited””) where there was a balance between coarsening
from armouring and fining from weathering. The balance
led to an equilibrium surface sediment grading that is
different from the grading of the underlying material.

[6] Sharmeen and Willgoose [2006] used ARMOUR to
simulate the long-term one-dimensional hillslopes of mine
spoils. Among other things, their work has demonstrated the
attractiveness of the ARMOUR model and the potential of
its physically based conceptualization of soil evolution to
study landforms and soils. Their one-dimensional simula-
tions were an important initial stage for modeling more
complex two-dimensional problems such as catchments and
provided valuable insights into the organization of hillslope
soil grading in response to erosion and weathering process-
es. However, they are a simplified view of the hillslope. In
order to simulate the armouring and weathering processes in
natural systems at larger scale than the hillslope and
integrate them into erosion and landform evolution models
two dimensional simulations are needed.

[7] The main limiting factor in ARMOUR is the numeric
complexity of its physics and the consequent high compu-
tational requirements and long runtimes. This numerical
issue prevents its implementation for larger than hillslope
scale. Here we will show that simplifying ARMOUR is
possible. The physically based model will be reformulated
as a state-space matrix model. This will dramatically
reduce runtimes. This reformulation is the focus of this
paper.

[8] This paper presents (1) a description of the physically
based ARMOUR model, (2) a detail description of our
model (mARM), (3) the calibration procedure of mARM
using the ARMOUR model and laboratory experimental
data, (4) a parametric study using mARM exploring the
implications of the armouring and weathering physics, (5) a
comparison of armouring-weathering simulations under
varying weathering rates, and (6) calculation of a relation-
ship between the armour dso and geomorphology statistics
for a range of weathering rates.

2. ARMOUR Model

[v] ARMOUR is a physically based one-dimensional
model simulating temporal and spatial varying soil erosion
and armour development [Willgoose and Sharmeen, 2006].
It uses commonly accepted sediment flux and erosion
equations to simulate the amount of sediment entrained or
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deposited in each node down the hillslope at each time step.
ARMOUR simulates sediment flux and soil grading based
on interaction between three layers: (1) water layer in which
the sediment transport occurs and covers the entire width of
the hillslope; (2) armour layer which is the upper thin soil
layer where transportable particles are entrained or depos-
ited; (3) subsurface layer which is a semi-infinite depth soil
reservoir mantle used as storage for deposited material or
source of eroded material.

[t1o] In ARMOUR the sediment flux is estimated for a
given flow discharge as a function of bed shear stress,
median diameter of the material in the water, slope, bed
resistance and soil characteristics. For each node and within
each layer continuity of sediment is applied with the
sediment in each grading size range being transferred
between each layer and between each node by modeled
physics. At a node the balance between the incoming
sediment from upstream and the sediment leaving that node
is used to calculate the amount of erosion or deposition. An
entrainment function is used to determine how that net
amount of erosion or deposition is distributed across the
grading size ranges. Over the long-term this selective
entrainment in different grading size ranges changes the
surface soil grading. The size selection in the entrainment
function has two key components. The first component is
the Shields entrainment function threshold which is used to
determine the maximum particle size that can be entrained
for given flow conditions. The second component is the
distribution of entrainment across the grading ranges that
are finer than the Shields function threshold. Seven entrain-
ment modes are available in ARMOUR. Willgoose and
Sharmeen [2006] found that the hiding entrainment mech-
anism of Andrews and Parker [1987] produced the best
match to field data. In this mechanism smaller particles are
hidden from the flow by the courser particles that protrude
from the bed. This reduces the entrainability of the finest
fraction. The selective entrainment is thus a function of the
armour layer grading and the proportion of coarser material.
A second entrainment mechanism, called “material avail-
ability,” was also found to be well correlated to field data.
In this mechanism particles are entrained as a function of
their relative availability on the surface. In this paper we use
the material availability entrainment mechanism because its
conceptual framework can be more directly and simply
expressed by the matrices approach used in mARM. We
do this to simplify the discussion that follows, rather than as
a result of any inherent limitation of the approach.

[11] The weathering module in ARMOUR simulates the
breakdown of the armour layer particles over time. It has
two components: (1) the rate of breakdown of individual
particles, parameterized as a probability that an individual
particle will fracture in any time step, and (2) the grading
characteristics of the daughter particles generated when
breakdown occurs. Both processes may be space, time
and particle size dependent. The depth of the weathered
mantle is constant in space and time and is assumed equal to
the depth of the armour layer. Weathering thus only occurs
in the armour layer and not in the underlying source
material.

[12] While the weathering physics are defined with respect
to an individual particle the aggregate effect of weathering
occurs in ARMOUR by modifying the grading of the layers
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within its domain. In every iteration the volume and number
of particles in each grading group in the weathering mantle
is calculated. Those particles are then weathered according
to the breaking mechanism chosen by the user. The new
number of particles in each size group is then used to
recalculate the size distribution of the weathering domain.
Conservation of mass occurs in the weathering process (i.e.,
there is no mass loss as might occur with chemical weath-
ering) and parent and daughter particles are assumed to be
spherical.

[13] ARMOUR can simulate two types of weathering
breakage mechanism: (1) granular disintegration (akin to
spalling but creating rounded daughter products rather than
rock flakes) of a particle around its periphery resulting in
the reduction of the particle volume and creation of a
number of daughter particles, with the diameter of the
daughter particles being equal to the depth of the layer that
disintegrated from the parent particle; and (2) body fracture
in which the parent particle splits into a number of daughter
particles. Wells et al. [2008] compared these models to
laboratory salt weathering experiments and found a best fit
with a mechanism that split the parent particle into two
daughter fragments. The best fit was when the two daughter
fragments had equal volume. We therefore used the mech-
anism where particles split in two equal volume daughter
fragments.

3. Modeling Approach
3.1. Matrix Approach

[14] Our approach involves simulating the evolution of
soil grading through time. The soil grading at any given
time is represented by a vector called the state vector g
(in the state-space literature). In this paper the entries in the
state vector, g;, are either the mass or proportion of sediment
in the grading size range i. The transition from the state at
any given time to the state at the next time step is described
by a matrix equation. It describes both how any given state
changes with time and how each of the states at one time, #,
are related to the states at the next time step t,.

g, =Rg, (1)
where the matrix R is called the transition matrix and is
typically a function of the size of the time step (f, — #)
[Ross, 1993]. Note that any set of coupled differential
equations (e.g., the physics in ARMOUR) can also be
expressed with equation (1). The advantage here is that we
can explicitly formulate the stochastic breaking process
used in the weathering model in the same form. The details
of this formulation follow below.

[15] In mARM the state is the percentage of material in a
soil grading class so that the state vector is the grading
distribution of the surface soil. The transition matrix param-
eterises the change of that grading by the weathering and
armouring processes so that equation (1) evolves the soil
grading of the simulated landscape.

3.2. The mARM Model Outline

[16] The mARM simulates each physical process as a
multiplicative change to the state. If we have a single
process, we will call it @, with a corresponding transition
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matrix R then the evolution of the grading vector over one
time step is

EH_] = R”gt (2)

which is equation (1) where one time step is (1, — ¢;) that
can be extracted to multiple processes by assuming that the
effect of one process occurs on the result of the other
processes. For instance, if we have three physical processes
that can be considered independent at the timescale of the
single time step, called a, b, ¢, with corresponding transition
matrix in equation (1) of R, S, and T then the combined
effect of these processes on the soil grading is

8., = T9Rg, (3)

where the order of the matrix multiplication implies that
process a acts on the grading first, » operates second on the
result of process a, and c is third and operates on the results
of process b. This disaggregation of processes is often
called “operator splitting” [Celia and Gray, 1991]. In the
following sections we describe the physics we have used for
each of the modeled processes.

[17] Equations (1) and (3) follow the traditional presen-
tation of transition matrices. In the discussion that follows it
is more convenient to work with the marginal transition
matrix than the actual transition matrix. In this case

R=I+M 4)

where I is the identity matrix (the identity matrix is 1 for the
diagonal elements and 0 elsewhere, so that g = Ig) and M is
the marginal transition matrix. The change in grading over a
time step is proportional to matrix M. The advantage of
formulating the matrices in this form is that the rates of the
process represented by M (e.g., the weathering rate) can be
changed simply by multiplying the marginal matrix by a
scaling factor. For example, doubling the process rate is
achieved by the multiplying the marginal transition matrix
by 2 so that

A(1x)=1+M
A(2x) =1+2M (s)

[18] In the discussion below we are referring to the
marginal transition matrix unless otherwise noted. In mar-
ginal transition matrix form equation (3) is

g, =0+C)1+B)I+A)g, (6)

where A, B, and C are the marginal transition matrices
corresponding to the transition matrices R, S, and T. Both
the marginal and transition matrices are nondimensional by
definition but A, B, and C are still potentially dependent on
the size of the time step.
3.2.1. Erosion and Armouring

[19] As in ARMOUR we consider a thin surface layer
(the armour) in which the grading changes with time, with a
semi-infinite subsurface of material below the armour layer
with a grading that does not change through time. The lack
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of change with time of the underlying material is not
required by the following derivations, but is an assumption
we make in the remainder of this paper to simplify the
presentation. At each step material is eroded from the
armour layer and to maintain mass continuity in the armour
layer the armour layer is recharged using material from the
subsurface. To ensure mass continuity it is convenient to
work in terms of the total mass of sediment in each grading
size range, i, per unit area of soil surface, G,, rather than the
proportion of sediment by mass in the grading range, g;. In
the armour layer the two are related by the equation

G; = ppDg; (7)

where D is the depth of the armour layer and p, is the bulk
density of the sediment. For simplicity we assume that the
bulk density of the sediment does not change with changes
in the grading distribution. The erosion step of the
calculations is then

Ge:QO_FAQO: {I—%A}Qo (8)

where G, and G, are the total mass grading vectors for
before and after the erosion step of the calculation,
respectively, AE is the depth of erosion during the time
step, D is the armour depth, and A is the marginal transition
matrix for the erosion process. The sign convention in
equation (8) means that A is defined positive for deposition.
The transition matrix determines what the distribution of
entrainment from each of the grading size ranges is while %
determines the absolute amount of erosion (normalized by
the depth of armour layer). The normalization of the
transition matrix A by (—4£) is done to remove the time
step size dependence in equation (6). Implicit in our
assumption that A does not vary during the time step is an
assumption that % is small so that erosion physics do not
change during the time step. This assumption is twofold.
First as % increases the accuracy of this step decreases,
because we have explicitly disaggregated this process from
the other processes below. Second as the grading changes
the transition matrix A will change as a result of the
armouring process itself, though the processes of hiding and
selective entrainment of the different grading size ranges
[Parker and Klingeman, 1982].

[20] After applying equation (8) the total mass of sedi-
ment per unit area in the armour layer, Y G.,,;, will be less
than before erosion by AE. Since we require that the depth
of the armour layer is constant with time we must recharge
the armour layer with sediment from the semi-infinite layer

underlying the armour. The recharge step is

AE
Qr = Qe + AprgSS = Qe + st‘s

9)
where G, is the total mass grading vector for the armour
after recharge with subsurface material, and g, and G, are
the grading and total mass vectors for the subsurface
underlying material per unit area, respectively. We can then
combine equations (8) and (9) to yield the equation for the
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erosion of the armour layer (which is mass conservative for
the armour layer) to yield

AE AE

G =Qo*fAQo+7G (10)

=r =55

and if we reformulate this in terms of the grading vector, g,
using equation (7) and dividing through by p,D

g = (11)

AE AE

where I is the identity matrix. Equation (11) is the equation
for the cumulative effect of erosion and armouring on the
grading of the armour layer. To calculate this equation we
need only know the initial grading of the armour gy, and
subsurface layer, g, the depth of erosion relative to the
depth of the armour layer during that time step, %, and the
armouring marginal transition matrix A. The amount of
erosion in the time step AF is defined as AE = EAt where E
is the erosion rate per unit time in units of depth/time, and
At is the time step. We will return to how the transition
matrix is calculated below.

3.2.2. Weathering of the Surface

[21] For weathering we will initially consider the case of
physical weathering where the particles in the armour are
broken into smaller pieces and this fragmentation is mass
conservative. The mass conservative weathering equation is

g, =g +AWBg =(I+AWB)g (12)
where AW is the amount of weathering that occurs per time
step, B is the weathering marginal transition matrix (which
is nondimensional), and the weathering per time step AW is
defined in terms of a weathering rate, W, as AW = WAt. The
weathering rate, W, has units of 1/fime since it is the
timescale for weathering rate. Note that the initial grading
used in this equation is the result after applying erosion and
armouring and is consistent with equations (3) and (6).

[22] The assumption of mass conservation is not essential
and we can model nonconservative weathering processes.
Chemical dissolution is not mass conservative because
particulate matter is dissolved and is leached out of the soil
so that the mass of particles decreases over time. It is not
modeled in this version of mARM but proposed here for
future reference. Dissolution can be calculated as an addi-
tional step on equation (12) that has a similar form to
equation (10)

AS AS
g = {' ——C}sﬁﬁ&x (13)

=5 D

where AS is the equivalent depth loss for the armour as a
result of dissolution of the mineral matter in the armour.
Note the dissolution mass balance differs from the previous
steps because dissolution normally results in a reduction in
bulk density of the armour as pores in the soil particles are
created. Thus the equivalent depth loss AS is not
necessarily equal to mass loss in the armour layer divided
by the bulk density, but is somewhat less. Equation (13)
does not account for these bulk density changes.
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3.2.3. Armour Evolution

[23] Equations (11) and (12) allow us to predict the
evolution of the armour grading over time as a result of
erosion, armouring and physical weathering. We only need
to define the soil initial conditions, the erosion and weath-
ering rates (E and W, respectively) and the grading transition
matrixes for calculating erosion and weathering (A and B,
respectively).

AE AE

g, =1+AWB {I 73A}gt + S0+ AWBlg (14)

D

where g, is the armour grading at the end of the time step
after all the processes are applied. To evolve the landform
this equation is applied repeatedly with g, at each time step
being the 8,4, from the previous time step. Note that we do
not need to assume that the transition matrices are constant
over time. The transition matrices A and B can evolve from
time step to time step, but during each time step they are
constant.

[24] Moreover, it is possible to define the equilibrium
armour grading by noting that at equilibrium the initial and
final gradings in equation (14) are equal (i.e., 81 = &) so
that the equilibrium soil grading g* is

-1
« _AF {I 1+ AWB] {I _ﬁAH 1+AWBlg  (15)
) D Sss
[25] This equation appears at first sight to have a depen-
dency on time step through AE and AW. However, if we
substitute AW = WAt and AE = EAt in equation (15) and
divide through by Az we obtain

ETE WE -
*_ZIZA_wB+ - ABA| I+ WAB 1
g D{D +p A } I+ wABlg — (16)

and if let Az — 0 so that the time step is small then the
equilibrium soil profile is

WD

g = {A - 73} 45” (17)

[26] This equation indicates that (1) the time step depen-
dency is an artifact of the numerical approximation inherent
in the state-space formulation and (2) the equilibrium
grading is a function of the relative importance of the
erosion and weathering as given by the nondimensional
number 2 where 2 small indicates that the soil is erosion/
armouring dominated (i.e., WD < E). If the weathering rate

is zero (i.e., W = 0) then this simplifies to
g =A"g, (18)

[27] Note that for equations (15)—(18) the transition
matrices are those that apply for the equilibrium grading
g*. If the transition matrices are dependent on the armour
grading then it is likely that these equilibrium equations
would need to be solved iteratively. The solution steps
would be (1) an initial guess of the equilibrium grading is
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made, (2) calculate the marginal transition matrices using
the current estimate of the grading, (3) estimate a new
grading using equations (15) or (18), and (4) return to step 2.
The numerical procedure captures the idea that it is neces-
sary to solve both the transition matrix and the equilibrium
grading vector simultaneously.
3.2.4. Erosion Physics

[28] The derivation of the state-space matrix evolution
approach outline above does not assume any specific
constitutive equations for erosion, armouring and weather-
ing. In this section we outline the physics we adopt hereafter
in this paper. We adopt the physics below simply to
demonstrate the numerical solution of these equations and
to allow us to compare the results from mARM with our
ARMOUR model, not because the approach in equations
(1)—(18) inherently requires the physics outlined below.
The erosion rate (£) we use in this paper is

qm S

E=e¢e 7
50a

(19)

where e is the erodibility factor, ¢ is discharge per unit
width (m3/s/m), S is slope, dsq, is the median diameter of
the material in the armour layer and «;, a, and ( are
exponents which need to be calibrated. In the case of planar
slope with constant slope then the exponents a; and a, can
be directly derived from the shear stress dependent erosion
physics [see, e.g., Willgoose et al., 1991]; otherwise, they
need to be calibrated. In this paper we consider only a one-
dimensional, hillslope with constant width and runoff
excess generation down the slope, 7, so discharge is

qg=rx (20)

where ¢ is the overland flow discharge per unit width
(m*/s/m), and x is the distance from the most upstream point.
[29] The erosion transition matrix entries are the amount
of erosion/unit time in each of the size classes per unit of
total erosion. The transition matrix A is diagonal with the
off-diagonal elements being zero. The diagonal elements of
A, Ay, are
a
dy’
A=9p Lo for k=M
dy’
0 for k>M

g for k<M
(1)

where dj, is the mean diameter of size class &k (k = 1 is the
smallest diameter grading class), the power m needs to be
calibrated, ¢ and b are scaling factors, and M is a size
threshold that determines the largest particle diameter that
can be entrained in the flow (determined by the Shields
stress threshold). For m > 0 in equation (21) the amount of
sediment eroded in each size class increases as grain size
diameter decreases (reflecting an increase in mobility as
grain size decreases) and decreases as the proportion of that
size class g; in the armour decreases (reflecting its reduced
exposure to entrainment).
[30] The scaling factor a is determined to ensure

M
Z ZAyg, = ZAkkgk =1
i =1

(22)
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where the double summation required by mass conservation
can be simplified to a single summation by noting that for
erosion all off-diagonal terms in A are zero. Equation (22)
ensures that the total amount of sediment eroded in
equation (11) is AE.

[31] To determine the scaling factor b we need to deter-
mine the largest particle diameter, d,,, that can be entrained.
This is determined by the Shield’s shear stress threshold

1 To
dyp = —
" Fs ’Y(S_l)

(23)

where 7 is the bed shear stress (79 = YR,S), R), is the
hydraulic radius, F; is the Shields entrainment threshold,
is the unit weight of water, and s is the specific gravity of
the sediment (here we assume s = 2.65). Using the Manning
equation to calculate R,

Rh _ (nq)o.ﬁsfo.?) (24)
where n is Manning friction factor, leads to the equation for
threshold diameter in terms of discharge and slope

dy, = 21.6(ng)**s%7 (25)
[32] The value of M in equation (21) is then determined
such that for class M dj, falls inside the Mth class’s size

range. For the class range M the A4, is decreased by the
proportion of the class range below d,;, so that

_dp —d

b=
d,—d,

(26)

where d,, and d; are the upper and lower bound diameters for
size class M, respectively.
3.2.5. Weathering Physics

[33] The weathering transition matrix (B) defines the
relative change in each grading class (i) as a result of the
fracturing of particles in the weathering mechanism. A
single grading class will lose a proportion of its volume
to one or more smaller classes. This proportion is a function
of the distribution of the classes, the mechanics of the
fracturing and the characteristics of the daughter particles
[see, e.g., Wells et al., 2008]. This process is shown in
Figure 1 for an example where particle breaks into two
daughter particles of different volumes. If multiple daughter
particles (with a corresponding range of volumes) are
created by weathering then the mathematics is more com-
plicated but the principle is the same.

[34] The particle breakdown rule for the generation of
two daughter particles is that a parent particle of diameter d
breaks into two particles of diameters d; and d,. If disso-
lution does not occur (i.e., below we model only physical
weathering) so that mass conservation is true (3 > B;g; = 0)

then d® = d; + ds. If the geometry of breakdown i§ grain size
invariant and d; = ad, then

(27)
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[35] Thus the diameters of both daughter fragments can
be determined from the diameter of the parent particle,
the geometry of fracture and mass continuity. We use
equation (27) to determine the range of diameters of
daughter particles that are generated from parent particles
in a single grading range (Figure 1a). The grading range of
particles in class 7 is [d;_1, d;] so that by using equation (27)
we determine the range of diameters for the smaller of

; f;;l)'/s ,ﬁ} and for the larger
diy d;
ry(l+a'3)1/3 ’a(H—L‘r})l/}
lating equation (27) for the upper and lower bounds of the
grading ranges. If the mass of material being weathering
from grading range i is M (the hatched area in Figure 1a)
then the mass of partiscles in the smaller range is 5 %3 and in
the larger range is % The process of determining what the
cumulative daughter products are from weathering of all of
the parent grading ranges involves calculating the numbers
above for all parent grading ranges and summing up the

grading ranges for all the daughter particles.

[36] There are a number of complicating factors in the
calculation. The first is that the grading range of the
daughter particles will not necessarily fall on the grading
ranges of the discretization of the soil grading used in the
calculations (Figure 1b). Legros and Pedro [1985], Salvador-
Blanes et al. [2007], and Wells et al. [2008] used one
thousand 1 pm “boxes” to represent soil distribution in
their profile weathering models enabling high-resolution
transition between grading classes. Their approach is com-
putationally inefficient and generates numerical artifacts,
and is therefore not suitable here. In ARMOUR to avoid this
problem weathering was calculated from an average particle
size for each class and daughter particles contribute to only
two smaller grading classes, corresponding to the size of the
two daughter particles. This can result in simulations from
ARMOUR having spiky grading artifacts over time.

[37] Instead mARM uses interpolation to allocate the
mass of daughter products to the requisite size ranges in
the discretization of the grading (Figure 1). This avoids the
spiky artifacts from ARMOUR.

[38] Finally in the calibration of the “two daughter
particle” model above Wells et al. [2008] found it more
convenient to express everything in terms of the mass
fractions generated in each of the size ranges. This allowed

daughter particles as {

particles as . This is obtained by calcu-

their simulations to be consistent with the method of
measurement of weathering breakdown experiments of
sediment mixtures in their experiments. Wells et al. [2008]
showed that is possible to calibrate the diameter-based
conceptualization outlined above to mass-based data, and
they used this calibration to uniquely identify the daughter
product geometry factor a

3.3. Some Example Transition Matrices

[39] Some examples of transition matrices are outlined
below to clarify the preceding presentation. For clarity these
are presented for a very simple soil grading, g, with just two
soil fractions where g; is the fine fraction and g, is the
coarse fraction, with diameters ¢, and d,, respectively.
3.3.1. Erosion and Armouring

[40] Example 1 is as follows: If all the erosion occurs
from the fine fraction and none from the coarse fraction,

then
k0
A= 5 o]

where conservation of mass requires from equation (22) that
> A,g; =1 so that k = gll, where i is the index of the rows

(28)

and columns in A.

[41] Example 2 is as follows: The proportion of the two
size fractions 1 and 2 is in the proportion « so that class 1 is
« times more mobile than class 2 so that

ko0
S

where > A, = A11g1 T Axng> = 1 and k; = ak,, yielding

(29)

1
b= (g1 +2) (30)

3.3.2. Weathering

[42] The main difference between erosion and weathering
is that, in the absence of dissolution, mass balance is
maintained through the weathering cycle so that > 4,g; =
0 for all 7, so that ) >~ A;g; = 0. J

[43] Example 3 is as follows: As for the erosion example
above we will consider the simplest possible scenario, with

7 of 15



F03001

two size classes, 1 and 2. Consider the case where 10% of
the mass of grading class 2 breaks into particles of class 1 in
one time step, and where no breakdown occurs of particles
in class 1. The marginal transition matrix B is

0 K
5[0 &

where > >~ A; g;= ki g + ky go = 0 so that by continuity
i

(1)

ky = —k;. If 10% of the material in class 2 is removed during
each time step then k; = —k, = —0.1.

[44] Example 4 is as follows: This example extends
example 3 to look at materials with more than 2 size
classes, in this case 3 classes, a diameter-dependent weath-
ering rate and what happens over multiple time steps. If
10% of class 3 breaks into class 2, 5% of class 2 breaks into
class 1 and no breakdown occurs in class 1, then the
marginal transition matrix is

0 0.05 0
B=[0 —005 0.1 (32)
0 0 —0.1

where the numbers in the matrix are derived in the same
way they were for equation (31), but where there is now a
size-dependent weathering rate. Note the lower triangular
portion of the matrix is zero because particles can only get
smaller not larger. These zero entries are a general
characteristic of marginal transition matrices for physical
weathering. For chemical weathering, however, the cemen-
tation of particles together by precipitates or gangue
minerals can potentially generate larger diameter daughter
particles in which case the lower triangle would no longer
be zero. Note also that the zero entry in the top right corner
is because, in this example in one time step, particles from
grading class 3 do not break down into class 1.

[45] Let us now consider what happens over multiple time
steps. The equation for the grading change over two time
steps is

g =0+Bg, = (l +B)(1+B)g, = (l +D)g, (33)

where the subscripts on g here refer to the time step not the
grading class, and where D is the marginal transition matrix
for two time steps. This two time step matrix is

0 0.0975 0.005
D=2B+B>= |0 —0.0975 0.185 (34)
0 0 —0.19

[46] Note that the structure is very similar to the one time
step matrix B except that its entries are approximately twice
the magnitude of the single step matrix. This can formal-
ized. When B is small (so that ||B|| > ||B?|| where ||.. .|| is
the norm of the matrix) then D ~ 2B. As the time step
becomes smaller the matrix entries B become smaller and
the approximation D = 2B improves. The other thing to note
about equation (34) is that all of the entries in the upper
triangular part of the matrix are nonzero. In particular, in
contrast to B the top right corner entry of D is nonzero. This
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is because in the first time step some class 3 particles go to
class 2, while at the second time step some particles in class
2 move to class 1, so if we model the two time steps, in one
time step that is twice as long, particles in class 3 can
contribute to class 1, albeit quite small quantities.

4. Data Used in This Study

[47] The soil grading, topographic and meteorological
characteristics of the Ranger Uranium Mine (Northern
Territory, Australia) spoil site were used in this study. The
site we use was described in detail by Willgoose and
Sharmeen [2006]. The grading distribution for this site is
coarse-stony metamorphics and the experiment used a 24m
hillslope with a constant gradient of 2.1%. Willgoose and
Sharmeen divided it into six equally spaced nodes, and we
do likewise for consistency. Measured runoff data in Ranger
[Willgoose and Riley, 1998] was used in the ARMOUR
study to calculate discharge and was interpolated into an
approximately 100-year data set [Sharmeen and Willgoose,
2007]. We used a 200-year simulation, with an output of
nearly 50 000 time steps, as a baseline for our calibration
and evaluation procedure.

5. Model Calibration

[48] The physics of mARM (as presented above) and
ARMOUR are comparable. This gives us confidence in the
model simplification compromises. However, the new con-
ceptualization used in mARM leads to a mathematically
different model. In addition, simplifications have been made
in the way discharge is calculated. While ARMOUR uses
detailed time-varying runoff data (described by Sharmeen
and Willgoose [2007]), mARM uses time-averaged values.
The models physical parameters are therefore not entirely
comparable and need to be calibrated if we are to mach their
predictions.

5.1. Armouring Component

[49] We calibrated mARM to the ARMOUR model to
demonstrate that the physical model conceptualization
inherited in mARM can match the dynamics of hillslope
armouring simulated by ARMOUR and validated by Willgoose
and Sharmeen [2006]. With the physically based model
ARMOUR we can exercise the model to ensure that we
test all aspects of hillslope sediment temporal dynamics.
Willgoose and Sharmeen [2006] showed that it can be
difficult to fully exercise all aspects of armouring with field
data. For instance, ARMOUR provides detailed quantitative
prediction of armour grading on a hillslope for periods of up
to hundreds and thousands of years, something that is
difficult to achieve in field or laboratory experiments. It is
for that reason that we calibrate mARM to another model
(ARMOUR) rather then directly from field data, despite the
compromise inherent in this approach.

[s0] Calibration of mARM adjusts (1) the relationship
between discharge (¢) and slope and erosion rate
(equation (19)) and (2) the influence of mean diameter
(dy) on erodibility (equation (21)). Controlling these rela-
tionships is done by the appropriate exponents (e, oy, v, 3
and m) and the Manning friction factor () in equation (25).
Initial ARMOUR «, a,, 3 and m values were used for the
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Figure 2. Proportion of the coarsest five (out of 18) size classes (in mm) in the overall soil grading over
time (50,000 iteration is equivalent to 200 years) in (a) ARMOUR and (b) mARM. These results are from
the outlet node of a 24 m hillslope equally divided into six 4 m nodes.

calibration procedure [Willgoose and Sharmeen, 2006].
They were then fine tuned to match the armouring simula-
tion of ARMOUR for the Ranger experiments (24 m long,
2.1% hillslope divided into six equal nodes, 200-year
simulations) by finding the best fit of trends with time.

[51] We calibrated the armouring component of mARM
by fitting the time-varying particle size distribution plots to
the time varying particle size distributions of the ARMOUR
simulations at each of the six nodes down the hillslope.
Figure 2 shows the change at the five coarsest size classes at
the hillslope outlet node for both models. We were able to
achieve a good match between mARM and ARMOUR in
the calibration, with a maximum variation of 5% in the
grading distribution over the 200-year simulation.

[52] The differences between ARMOUR and mARM
results occur due to a difference in the behavior of just
one grading class, the most erodible grading class in each
node. As demonstrated in Figure 2 the 1.0 mm class reached
an equilibrium in the ARMOUR simulation (Figure 2a)
while this class does not reach an equilibrium in mARM
(Figure 2b). This is due to the simplified way the Shields
transport threshold is treated within mARM. In ARMOUR
discharge is calculated from observed time varying rainfall
data while mARM uses a time averaged constant. The range
of discharges in ARMOUR results in a close to equilibrium
erosion-deposition relationship. This does not occur in
mARM due to its constant discharge which leads to con-
tinuing erosion.

[53] This change affects the coarser classes as well since
their proportions increase as a result. Since this difference in
behavior only results in a maximum difference of 5% at the
end of the 200-year simulation, and the fact the weathering
component was not activated in these simulations, we are
confident in the capability of mARM to satisfactorily
simulate the armouring process.

[s4] The final values of the calibrated parameters are
a=1,a,=12,8=1,m=4,e=0.025 and n = 0.1. The
value of 3 = 1 suggests an inverse relationship between
erosion and dso which differs from typical empirical obser-
vations and previous parameter fits (around 0.75 [Henderson,

1966; Willgoose and Sharmeen, 2006]). Our analysis
reveals the results of mARM were insensitive to [ varia-
tions ranging from 0.5 to 1.5. The effect of changes in 3 was
mainly on the rates, not on the trends of the results.

5.2. Weathering Component

[s5] The weathering component of mARM was calibrated
to the Wells et al. [2008] experimental data. Wells et al.
[2008] measured and simulated the change in the mass of
five grading classes as a result of physical weathering of a
rock from the Ranger site. They found a good fit between
laboratory experimental data of salt weathering of rock and
a fracture model where a parent particle generated two
daughter particles of equal volume. By using the same
equal volume daughter products in mARM we matched
their laboratory and simulation results (Figure 3).

6. Parametric Study

[s6] In the previous section we used the Ranger data
[Willgoose and Sharmeen, 2006] to calibrate the armouring
component of the mARM model. In this section we com-
pare mARM and ARMOUR results for a range of con-
ditions in order to examine the robustness of our new
model. We simulated the armouring (with no weathering)
of a 24 m hillslope with 6 equally spaced nodes for (1) two
contrasting slope gradients (1 and 20%), (2) 50% reduced
runoff, and (3) a finer initial soil grading. ARMOUR and
mARM were compared by examining the simulated ds, of
the surface armour (i.e., the median diameter) of the
hillslopes.

[57] The 50 000 iteration simulations (equivalent to
200 years) correspond well to both final dsy values and
behavior in most cases (Figure 4). The largest difference in
dso was for the low slope gradient simulations in which
mARM has predicted a 4.4 mm ds, at node 2 (Figure 4a)
while ARMOUR predicted a dso of 4.9 mm (Figure 4b).
This node also exhibited the most significant differences in
behavior over time. The reduced runoff simulation showed
nearly identical results to the low-gradient simulations
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Figure 3. Change in weight class proportion over cycles of weathering. (a) Wells et al. [2008] analytical
(line) and Monte Carlo simulations and (b) mARM weathering component simulation: circles, >50%;
squares, 25—50%; triangles, 10—25%; diamonds, 1—10%; inverted triangles, <1%. The particle grading
here is divided into five weight classes for better comparison with the Wells et al. [2008] results.

(Figures 4a and 4b). We do not discuss these further other
than to note that this indicates an equivalence in behavior
between low discharge and low slope, something we will
return to later.

[s8] The differences observed in the calibrations (Figure 2)
where the largest erodible class did not reach an equilibrium
in mARM can also be seen in both the low and high slope
gradient results (Figures 4a and 4c). Unlike the asymptotic
equilibrium behavior shown by ARMOUR the ds, values of
most mARM nodes continue to increase. As noted before
this is a result of mARM approximating entrainment in the
size class within which the Shield’s threshold falls and its
effect on the other grading classes is small other than this
limitation. We believe that mARM’s ability to approximate
the more physically based ARMOUR is robust.

[59] In the finer initial soil comparison we used the
grading of the Northparkes Gold Mine (New South Wales,
Australia) spoil site [Willgoose and Sharmeen, 2006]. The
soil grading of this site was chosen since Willgoose and
Sharmeen [2006] found its cohesive characteristics resulted
is significant differences compared to the noncohesive
Ranger Mine grading. Figures 4e and 4f show close
similarities between mARM and ARMOUR final ds, pre-
dictions and behavior in all six nodes.

7. Combined Armouring-Physical Weathering
Simulations
7.1. Effect of Weathering Rate on Soil Distribution
[60] In this section we used the calibrated mARM from
the previous sections to explore the response of a one-
dimensional hillslope to the interaction between the armour-
ing and physical weathering processes. Figure 5 shows the
results of four simulations (6 nodes, 24 m slope at 2.1%
slope) with different physical weathering rates. The extreme

low weathering rate (Figure 5a) produced results that were
nearly identical to the no-weathering simulation on the same
hillslope. With an increased weathering rate (by a factor of
10, Figure 5b) the soil grading starts to decrease after an
initial steep increase. This steep increase is the result of
erosion of the initial soil grading which is relatively
abundant with fine erodible materials. Once the erodible
materials have been removed (after approximately 10 000
iterations) the surface was armoured. The decrease in ds,
after this time is solely the result of the weathering process
breaking down the armour layer particles. This later de-
crease in dsq indicates that a transition occurred where the
weathering rate dominated the erosion and armouring rate
resulting in a transport-limited erosion regime.

[61] After increasing the weathering rate by an additional
factor of 10 (Figure 5c) we see a more substantial domi-
nance of the weathering process over armouring in the
evolution of surface grading. Nodes 1 and 2 (which are
higher on the hillslope and therefore have less runoff and
erosion) are completely dominated by weathering. At these
nodes there is no increase in ds, at the beginning of the
simulation, indicating that no armour has been created.
Nodes which are lower on the hillslope (3—6) still show
some armouring in the early stages of the simulation. The
nodes reach a state of equilibrium after 15,000 to 20,000
iterations with relatively large differences in the ds5, between
the two uphill nodes (1 and 2) and the rest of the nodes.

[62] For the highest weathering rate (Figure 5d; a further
factor of 10 increase) the entire hillslope is completely
weathering dominated. No armour was created anywhere
and the differences in equilibrium surface grading between
the nodes are small. This latter observation is important
because armouring creates a grading distribution that varies
downslope (with discharge) while weathering, if spatially
uniform, creates a distribution that is the same everywhere.
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Figure 4. Median diameter d5, of the surface in six equally spaced nodes (node 1 is the most upstream
node) on a 24 m hillslope in (a) mARM using 1% slope; (b) ARMOUR using 1% slope; (¢) mARM using
20% slope; (d) ARMOUR using 20% slope; (¢) mARM with finer initial soil grading using 2.1% slope;
(f) ARMOUR with finer initial soil grading using 2.1% slope.

11 of 15



F03001

St

d_(mm)

Node 1
-— Node 2 ]
= =Node 3

(%]
T

210 310" 410

Iteration
8 - - T

1 ©

0 110"

——Node 1
=— Node 2 ]
== Node 3

d_(mm)

S0

COHEN ET AL.: THE MARM FRAMEWORK AND ANALYSIS

F03001

E
E
'B;—‘
2L ]
1E b
0 7 7 7 7 4
0 110 210 310 410 510
Iteration
s AR T T T
Node 1
7L (d) -— Node 2 3
==Node 3
""" Node 4
6F Node 5
== Node 6
5t b
B
E a4f :
o
3} b

2100 3100 410° 510

Iteration

0 L
0 110

Iteration

Figure 5. Median diameter d5, of the surface in six equally spaced nodes (node 1 is the most upstream
node) on a 24 m hillslope in under different weathering rates: (a) factor of 0.1; (b) factor of 1; (c) factor of 10;

(d) factor of 100.

But here we see that even for extreme high weathering rates
(where erosion rates are relatively negligible) there are still
differences between the equilibrium grading of the nodes
downstream which demonstrates the significance of the
armouring-weathering coupling process postulated by
Sharmeen and Willgoose [2006].

[63] Our results agree well with the findings of Sharmeen
and Willgoose [2006] on the interaction between armouring
and physical weathering and its effect on soil distribution
and erosion regimes.

7.2. Area-Slope-ds, Relationship

[64] The significant reduction in run time by the mARM
model (about 10* times faster than ARMOUR) allows us to
conduct a wide array of simulations under different condi-
tions that are not feasible with ARMOUR. In this section we
explore relationships between geomorphologic parameters
and soil distribution derived from one-dimensional hillslope
simulations. Figure 6 shows the log-log distribution of
equilibrium ds, along four hillslopes with different slopes
(2.1, 5, 10 and 20%). We found strong correlations (R*> 0.9;
p < 0.005) for all four hillslopes. This suggests the existence
of a spatial link between contributing area and slope and soil
characteristics. This relationship is further examined below.

[65] The relationship between contributing area, slope
and dsy was plotted for different weathering rates. We used

FEFEEENE IFETEErE BT SR St

0.4 )
06 07 08 09 1 L1 12 13 14
Log(contributing area)

Figure 6. Soil slope grading (in logarithmic values) as a
function of contributing area (also in logarithmic values)
derived from four hillslope simulations (with grading of the
following: solid circles, 2.1; open circles, 5.0; solid squares,
10.0; open triangles, 20.0%) divided to six equally spaced
nodes.
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Figure 7. Contour maps of dsy values interpolated from 24 nodes (diamonds) simulated by mARM
(contributing areas of 4, 8, 12, 16, 20, and 24 m in logarithmic values and slops of 2.1, 5, 10, and 20% in
logarithmic values). Each map was simulated with a different weathering rate: (a) 0.01, (b) 0.1, (c) 1.0,

contour maps and multiregression analysis to visualize and
quantify these relationships. Figure 7 show four of those
contour maps (created by the Kriging interpolation algo-
rithm in the Surfare 8.0 package) in which the logarithms of
contributing area and slope are plotted on the x and y axes
(respectively) and equilibrium ds, is interpolated between
24 measuring points. In each map these measuring points
were derived from four hillslopes with different slopes
(2.1, 5, 10 and 20%) divided to six equal nodes (with
contributing areas of 4, 8, 12, 16, 20 and 24 m).

[66] All four contour maps show a strong relationship in
which ds5, values increase as a function of area and slope. The
dso decreases as weathering rate increases which is consistent
with our results for the hillslope comparison (Figure 6).

The three lower weathering rate maps (Figures 7a—7c) are
quite similar in their contour arrangement while the
extreme high weathering map has stronger log-log linear
contours and shows a tendency for higher density contours
for higher area and slope. The consistency of these log-log
linear contours with a range of physical weathering rates
suggests that weathering rates have a relatively small
influence on the slope of the area-slope-ds, relationship.
[67] Table 1 summarizes the three parameters of the

area-slope-ds) multiregression analysis
dsy = cA"S” (35)

where A4 is contributing area (with exponent o) and S is
slope (with exponent 3). The ¢ intersect decreases as the
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Table 1. Summary of the Parameters of the dsj-Area-Slope
Multiregression Analysis for Different Weathering Rates”

Weathering Rate c « B o/
0.01 9.21 0.29 0.3 0.97
0.1 5.0 0.68 0.7 0.97
1.0 3.19 0.7 0.7 1.0
10.0 1.66 0.98 1.18 0.82

Here dsy = cAS”. The ds, values are from 200-year equivalent
simulations on a six nodes planar 24 m hillslope which was simulated with
four different slopes.

weathering rate increases. Soil becomes finer as physical
weathering becomes more dominant. The area and slope
exponents (« and () have a positive correlation with
weathering rate. They both show similar trends, an increase
in value between the lowest and the second lowest
weathering rates followed by nearly identical values
between weathering rates of 0.1 and 1.0 and finally an
increase in value in the extreme high weathering rate. The
change in § (the slope of the log-log contours) is small (a
maximum of 0.18) for all cases. These results suggest that
the area-slope-ds, relationship is robust. This has important
implications in soil distribution calculation since it shows
that we can theoretically extract soil grading as a function of
area and slope.

8. Discussion

[68] All the one-dimensional hillslopes we used in this
study had a constant slope which led to a common behavior
in all the simulations, downslope coarsening. Even under
extreme weathering and erosion rates all the downslope
nodes had coarser soil grading than the nodes upslope. Unlike
our one-dimensional hillslope natural catenary hillslopes will
have distinct units which vary in their topographic slope and
pedogeomorphic properties [Conacher and Dalrymple,
1977]. Accordingly, soil properties along a natural catena
will usually show a more complex change [e.g., Brunner et
al., 2004] than the general downhill coarsening simulated
by both ARMOUR and mARM. A general description of
soil distribution along a catena is coarsening from the
summit to the shoulder and backslope (where slopes and
erosions are high) followed by fining in the footslope
[Birkeland, 1974]. This overall downslope fining is usually
caused by deposition of fine material in the footslope where
slopes are low. There are many variations to the above
description [e.g., Bonifacio et al., 1997] as a result of
varying soil depths, weathering rates, erosion distribution,
pedogenesis, etc. [Birkeland, 1974].

[69] One limitation of the approach outlined here is that
that it implicitly assumes that soil does not move downslope
either by (1) erosion and subsequent deposition or (2) soil
creep. This limitation means that adjacent nodes on the
hillslope do not directly interact. The only interaction
between adjacent nodes is via the overland flow that drives
erosion. This limits applications to hillslopes without depo-
sition. To overcome this limitation would, we believe,
require incorporating mARM into a landform evolution
model where erosion and deposition spatially couple points
on the hillslope and drive the evolution of the landform.
This will also be true for modeling creep.
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[70] A more complex description of natural hillslopes
(e.g., flow divergence and convergence and deposition) is
beyond the scope of the one-dimensional models presented
in this paper. One of our planned applications of mARM is
as a pedogenesis component in a landform evolution model,
where deposition is calculated for transport-limited erosion.
The main advantage of models such as mARM, even in its
simplest form, is the ability to disaggregate the components
of hillslope processes which allow us to look at specific
parameters and processes which cannot be done in the field.
Moreover, the matrix formulation allows us to determine
long-term equilibrium soil grading directly from the me-
chanics of armouring and weathering. This will allow us to
potentially develop analytic expressions for soil catena in
terms of the physical component of soil evolution. Future
work is aimed at extending the mARM framework outlined
in the first half of the paper to examine the evolution of the
full profile of the soil, not just the surface armour layer, for
each point on a grid distributed in space. This will provide
the framework for us to simulate, in a computationally
efficient way, the interaction between soil profile pedogen-
esis and soil hillslope catena. This work will be reported in
due course.

9. Conclusions

[71] Hillslope scale simulation of armouring and weath-
ering is an important step in the investigation of these
processes and their influence on soil and morphology. Our
goal is to explore these important processes on a larger
scale. This was impractical with existing models (e.g.,
ARMOUR). We developed a simplified conceptual model,
mARM, which dramatically decreases the numeric com-
plexity and thus computer run time (on a 2.4 Ghz, 2G RAM
CPU a simulation of a 6 node hillslope over 200 years takes
approximately 65 min in ARMOUR and about 0.4 s in
mARM, a speedup of nearly 10%) enabling multiple large-
scale simulations. mARM utilizes the physical character-
istics of ARMOUR in a framework which computes the
complex spatial interactions.

[72] Armouring-weathering simulations by mARM
(Figure 5) illustrate the influence of increasing weathering
rate on soil grading and armour development on a hillslope.
We found that even for large weathering rates, while an
armour layer may develop quickly it will slowly be reduced
to a weathering dominated (transport-limited) erosion
regime. For extreme weathering rates (relative to erosion
rates) no armour layer is formed on the surface and the soil
grading quickly reaches a state of equilibrium and very fine
soil grading. These results agree well with the findings of
Sharmeen and Willgoose [2006].

[73] The area-slope-ds, relationship and contour maps
demonstrated that a log-log linear relationship between area,
slope and dsy is found and is robust against changes in
erosion and weathering rates. This has important implica-
tions for soil distribution mapping because it potentially
allows a major simplification in soil modeling as it allows
us to link soil grading distribution to geomorphology (i.c.,
upslope drainage area and slope), which can be used in GIS
applications.

[74] One important advantage of the matrix formulation
developed here is that, in addition to the temporal evolution
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of soil, the method also allows us to predict the equilibrium
soil that the system evolves to over millennia. This will be
the focus of future investigations, as it will allow us to
quantitatively link pedogenesis processes and climate with
observed soil properties.

[75] Our new model allows a more detailed exploration of
hillslope response to the weathering and armouring pro-
cesses. The work presented here showed that mARM is able
to simulate surface grading in response to the armouring and
weathering processes in a much simpler manner albeit with
some physical simplification. mARM can now be used for
large spatial scale simulations which will provide important
insights on the spatial distributions of the armouring and
weathering processes and their affect on soil development
and organization.

[76] Finally we note that the mathematical framework for
mARM that we have presented in this paper is completely
general, and not restricted by the process dynamics of any
individual mechanism involved in soil evolution. We have
demonstrated the approach here with two soil processes,
armouring due to erosion and physical weathering. We
picked these two processes because this allowed us to
compare the framework with a detailed physically based
and computationally intensive model (ARMOUR) we have
previously studied. However, our framework is equally
applicable to other soil processes. By way of illustration,
in the derivation of this framework we showed how chem-
ical weathering could be simulated with this framework. We
believe the generality of the mARM framework, the trans-
parency of the model formulation and its computational
efficiency can underpin quantitative studies of pedogenesis
and provide a quantitative framework for understanding soil
hillslope catena.
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