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a b s t r a c t

The extensive alteration of the earth's land cover during the anthropocene had widespread, and in some
cases unknown, effects on terrestrial and atmospheric conditions and processes. Predicting future
changes to the earth system therefore mandate a future-predicting framework of land use dynamics.
However while future-predicting earth surface and atmospheric models tend to explicitly incorporate
projected climatic conditions they all but ignore or overly simplify land use dynamics. As most surface
and atmosphere dynamics models use gridded input datasets, and land use is a highly spatially-dynamic
phenomena, a need clearly arise for spatially explicit representation of future land use dynamics. While a
number of such datasets exists at regional and country scales, no fully gridded future-predicting global
land use model and database has been reported to date. Here we present the Global Land Use Dynamics
Model (GLUDM), a gridded and temporally explicit agricultural land use predictor. GLUDM calculates the
relative area of a land use category (e.g. cropland) in each grid-cell by generating unique regression
coefficients in each grid-cell based on local historic trends and global population dynamics. Spatial ex-
pansions or abandonment of agricultural land is simulated by propagating excesses or deficiencies in
agricultural areas between neighboring grid-cells. This spatial connectivity is restricted by topographic,
latitudinal and urban characteristics. A validation analysis shows that GLUDM corresponds well to
observed land use distribution. GLUDM-predicted global cropland area dynamics between 2005 and
2100 are described herein. Globally, 18% increase in cropland area is predicted between 2005 and 2050
which corresponds very well to previous estimations. Following 2050, a general decrease in cropland
area is predicted. The results reveal new insights about global cropland dynamics, demonstrating, for
example, that changes in its spatial distribution will be highly heterogeneous, at both micro and macro
scales, in some locations worldwide.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Over the last 300 years humans have greatly altered the natural
environment to meet demands for food, fiber, and settlement. The
pre-existing ecosystems have been continually relegated to ever
shrinking marginal undeveloped and managed areas. As a result
the world's natural land cover has been substantially modified. It
has been estimated that as much as 50 percent of the Earth's land
surface has its biological production completely dominated by
humans (Vitousek, Mooney, Lubchenco, & Melillo, 1997). Similarly,
Ellis, Goldewijk, Siebert, Lightman, and Ramankutty (2010) found
that 39 percent of the earth's ice-free land area had either been
converted to agriculture or to urban areas. This modification of
natural systems has disrupted a number of important biogeo-
chemical cycles such as the carbon and nitrogen cycles. This has led
to increased levels of greenhouse gases, a decline in the health of
aquatic ecosystems, and has altered precipitation.

The primary driver of this expansion is the expanding human
population (Doos& Shaw,1999). From 1900 to 2000 the population
of the earth experienced a 400 percent increase. While the growth
in human biomass is itself a factor, the resulting increase in natural
resource consumption to feed, cloth, and house a population of this
multitude has had a far greater impact on the environment. While
impoundments, mining operations, and forestry make significant
changes to the landscape, nothing has altered the natural landscape
as much as conversion to agriculture. Over the last 300 years
agricultural expansion has resulted in a global net loss of between 8
and 11 million km2 of forestland (Foley, DeFries, Asner, Barford, &

Delta:1_given name
Delta:1_surname
mailto:sagy.cohen@ua.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apgeog.2015.05.010&domain=pdf
www.sciencedirect.com/science/journal/01436228
http://www.elsevier.com/locate/apgeog
http://dx.doi.org/10.1016/j.apgeog.2015.05.010
http://dx.doi.org/10.1016/j.apgeog.2015.05.010
http://dx.doi.org/10.1016/j.apgeog.2015.05.010


N. Haney, S. Cohen / Applied Geography 62 (2015) 366e376 367
Bonan, 2005). Conversion to agriculture has lead to increased
runoff, soil erosion, denitrification, desertification, the extinction
and endangerment of many species, and an altered atmospheric
composition (Tilman, 1998; Foley et al., 2005).

Scientists have long understood the consequences of conversion
to agricultural and sought accurate estimates of the global amount
of land under agricultural production. Until the 1960's this was
impossible as many nations were unable to inventory the amount
of agricultural land. The Food and Agriculture Organization (FAO) of
the United Nations began keeping detailed records of the amount of
agricultural land in each of its member nations in the 1960's (FAO,
2013). By the 1990's the global coverage of IR satellite imagery and
the greater availability of agricultural data increased the accuracy
and ease of making these estimates. Ramankutty and Foley (1999)
developed a comprehensive map of the extent of modern agricul-
ture by combining remotely sensed data with cropland inventories
where available. Using recent trends in agricultural development
they were able to use a simple land use allocation model and run
the model in reverse to the 1700's using available land use data as a
model constraint. The HYDE database, using a similar approach to
Ramankutty and Foley (1999), was developed to test the IMAGE 2
climate change model and was able to model land use back to
10,000 B.C. (Goldewijk, Beusen, van Drecht, & de Vos, 2010).

Global and continental scale numerical models are increasingly
being developed and used for predicting current and future at-
mospheric, biospheric, hydrospheric and lithospheric conditions
and fluxes. As most of these models use gridded representation and
land use is often an important parameter, predicting future land use
dynamics at global scale on a gridded surface is an important and
timely undertaking. For example, the WBMsed model (Cohen,
Kettner, Syvitski, & Fekete, 2013) is a gridded model that predicts
daily water, sediment and nutrients flux in global rivers (Cohen,
Kettner, & Syvitski, 2014). The model can be used to predict 21st
century fluxes using future-predicted climatic datasets form a suite
of GCMs (General Circulation Models) outputs. As land use is a key
parameter in water, sediment and nutrient input to river systems,
developing a spatially and temporally explicit land use input
dataset would be instrumental for reliably predicting these fluxes
into the future.

Based on two independent review papers (Heistermann, Muller,
& Ronneberger, 2006; Schmitz et al., 2014) we conclude that, to
date, no future-predicting, global, fully gridded and temporally
explicit land use dynamics predictions have been published. CLUE
(Veldkamp & Fresco, 1996) is a process based modeling framework
that allows the user to develop spatially explicit future land use
dataset based on multiple scenarios. However this model works
only at the regional scale and requires numerous variables for
which global data is not available. If the data was available this
approach is still impracticable for global scale modeling as data
would be collected within political units and the grid cells would
overlap international boundaries. Thus economic policies, political
decisions, and other variables would not be applicable. Other fac-
tors such as a global set of detailed soil types, types of crops grown,
available water supply, and agricultural practices are difficult or
impossible to obtain even at regional scales. This necessitates sig-
nificant abstraction if agricultural land use is to be modeled at the
global scale using a spatially explicit gridded model.

Despite these difficulties modeling land use, using a gridded
structure can be achieved by focusing on the one variable that has
the most influence on determining agricultural land use. This var-
iable should be easy to obtain and one that is universally under-
stand to influence the amount of agricultural land necessary. This
variable is global population. While this may not be the single most
important variable at a sub global scale it is appropriate to use at a
global scale given our globalized agricultural system.
In this paper we describe the theoretical and algorithmic
framework of the Global Land Use Dynamics Model (GLUDM),
present validation results and discuss future agricultural land use
dynamics, focusing on 21st century changes in cropland.

2. Methods

2.1. Theoretical framework

Historically, the most significant controlling factor on global
agricultural extent has been human population (Doos & Shaw,
1999). While in pre-industrial times the population of each coun-
try or region controlled the local extent of agriculture, in the cur-
rent industrialized economy global population seems to be the
main control on the amount of global agricultural land (Trostle,
2008). Thus as global population increases the total amount of
agricultural production must also increase.

Another major factor is the technology used in agricultural
production. Advancements in agricultural technologies mean that
increasing global population will require a relatively smaller in-
crease in agricultural lands (Heistermann et al., 2006). The global
standard of living is another important factor. Wealthy societies
have a higher caloric intake than poorer societies, requiring a
greater agricultural area to sustain them. Economic factors, water
availability and human decision making controls which types of
crops is planted with less productive crops requiring a greater
amount of agricultural land to sustain the same number of people
(Heistermann et al., 2006). An absolute constraint on the spatial
extent of agricultural land is the environmental variables acting at a
given point in space and time. These includes factor such as lati-
tude, altitude, and climate. However environmental constraints can
change overtime in response to human impacts or advances in
technology.

The question now becomes which of these variables are easily
available and are applicable at the global scale. Estimates of pop-
ulation are readily available from the aforementioned HYDE data-
set. The environmental variables latitude and longitude are also
easy to implement. However the other variables, described above,
are either unavailable or inapplicable at the global level. A way to
account for these variables implicitly is through the development of
regression equations based upon the principle driver of agricultural
development, population.

Creating a global regression equation is illogical and will convey
incorrect information. Therefore each location on continental earth
(i.e. grid cell) would require a unique regression equation relating
the changes in agricultural land use for that area in the past. This
method can account for recent changes in the fertility of agricul-
tural land and technology. The basic principle is to read in values
from a gridded input from a number of years and use the rela-
tionship between the population of the world at that year to
calculate regression coefficients for that grid cell. Then the model
can calculate the extent of agriculture at a given point in time by
inserting the population at that year into the regression equation.

2.2. Modeling algorithm

The HYDE 3.1 dataset (Goldewijk et al., 2010) of gridded crop-
land and grazing land from the years 1960, 1970, 1980, 1990, 2000,
and 2005 were chosen to serve as the dependent variables when
calculating the regression equations while the total global popu-
lation served as the independent variables (Fig. 1). The input files
are scale independent as the GLUDM model can adjust the internal
variables according to the desired output scale. In this paper we use
5 arc-minute spatial resolution to readily align our results to the
HYDE 3.1 maps. For each grid cell GLUDM reads in the values from



Fig. 1. The GLUDM model workflow. The model input includes a gridded layers of past
landuse (e.g. cropland area), a table of global population in years corresponding to the
landuse layers, and a gridded layer of spatial constraints on agriculture (e.g. latitude
and altitude). Based on a user-defined equation type (e.g. linear, power-law), a unique
regression equation is calculated for each grid cell (e.g. Fig. 2). The percent of landuse
area in used-defined future year(s) within each grid cell is calculated using the unique
regression equation. In case the calculated area exceeds 95%, excess landuse is allo-
cated to neighboring cells. Finally a gridded output dataset is saved.
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each of the input files as well as the population from each of those
years to calculate the coefficients for the regression equation
selected by the user (see for example Fig. 2 for a random grid cell).
The calculated coefficients are combined with the equation to
create a unique regression equation. While we use the HYDE
dataset to generate the regression equations, this model is not
limited to working with this dataset. It can be used with any
gridded agricultural land use dataset as the regression equations
Fig. 2. Example of regression equation calculated for a single grid cell located at �86� ,
33� . For this random grid cell cropland area is decreasing with increasing global
population. Here we use a linear regression for simplicity but other regression types
may yield more accurate predictions (will be the focus of future work). The regression
equation is used to forecast cropland area in each grid-cell for a specific future year
based on predicted global population for that year.
are calculated each time the model is run. The HYDE dataset was
chosen as it is the most complete land use dataset currently
available. By default GLUDM comes with linear, exponential, and
logarithmic functions but any type of regression equation can be
added. In this paper we used linear regression for simplicity and as
we have found this equation more closely matched the results of
the HYDE dataset in most regions. The year chosen by the user is
inserted into the equation to predict the total amount of agricul-
tural land in that specific grid cell for the year in question. The
output generated by GLUDM can be total cropland, total grazing
land, total agricultural land use (combination of the cropland and
grazing land) or all options. In addition to the gridded output, the
values in each of the cells are totaled to calculate the global amount
of the type of agricultural land selected.

Several constraints are placed on the allocation of agricultural
land. The first is that no agricultural land can exist above 66.5�

north or south, the Arctic and Antarctic circles respectively. Addi-
tionally no cropland can exist above 4000 m above sea level and no
grazing land can exist above 5500m. Lastly, no agricultural land can
exist in major built up urban areas. Slope was considered as a po-
tential constraint but was excluded as the average slope across
large grid cells is usually quite low and is irrelevant in areas where
terraced fields are common. Climate change is not directly
accounted for in the model. While climate projections are globally
available, climate has a complex relationship with agricultural area
which is not likely readily extractable from past trends. Another
constraint is that no grid cell can have a percentage of agricultural
greater than 95 percent. This was chosen because (in theory) no
grid cell of significant size can be wholly converted to agriculture. A
final obvious constraint is that no grid cell can have a percentage of
agricultural land less than zero. These constraints can generate
problems when allocating the amount of predicted cropland to the
map. For example regression equations do not automatically “cap”
at 95 percent. Although a check could be placed to cut values off at
95 and ignore the excess but this would violate the assumed rela-
tionship between total agricultural land and global population. To
solve this problem excess agricultural land is redistributed among
adjacent cells that have not reached their land use limit. A similar
process is undertaken for cells that violate the latitude, altitude,
and urban areas constraints. For the cells that have negative values
generated by the regression equations (abandonment of agricul-
tural lands) the deficit of agricultural land is distributed and
removed from adjacent cells.

3. Results

3.1. Validation

An extensive validation of our model is not feasible given that
there are very few estimates of total agricultural land use and
virtually no estimates the future spatial distribution of agricultural.
We therefore use ‘hindcasting’ in which we compare GLUDM re-
sults against established historical data. First the global amount of
agricultural land predicted by GLUDM is compared to the known
amount of agricultural land using the HYDE 3.1 and FAO Crop
datasets (Goldewijk et al., 2010; FAO, 2013). Total changes in agri-
cultural land are shown in Table 1. A Mann Whitney U Test showed
the values of these three datasets (Table 1) are not significantly
different (p < 0.01). The percent difference between GLUDM pre-
dictions and HYDE 3.1 and FAO Crop values is lowwith a maximum
difference of 2.6% (against the FAO Crop for the year 2010) and
average differences of 0.6 and 1.3% against the HYDE 3.1 and FAO
Crop values respectively (Table 1). Fig. 3 plot temporal changes in
global cropland area for the GLUDM, HYDE 3.1 and FAO Crop
datasets. It shows that while GLUDM effectively predicts the long-



Table 1
The global amount of cropland (106 km2) predicted by GLUDM compared to the
HYDE 3.1 and FAO Foodstat datasets (Goldewijk et al. 2010; FAO, 2013). The percent
difference between GLUDM predictions and the HYDE 3.1 and FAO Foodstat values
are reported in the brackets.

Year GLUDM crop HYDE 3.1 crop FAO crop

1960 1379 1368 (0.8%) 1370 (0.6%)
1970 1413 1421 (�0.5%) 1424 (�0.7%)
1980 1454 1451 (0.2%) 1453 (0.06%)
1990 1498 1520 (�1.4%) 1521 (�1.5%)
2000 1541 1530 (0.7%) 1514 (1.76%)
2005 1562 1557 (0.3%) 1536 (1.6%)
2010 1582 1541 (2.6%)
2020 1623
2030 1656
2040 1682
2050 1700
2060 1708
2070 1709
2080 1702
2090 1688
2010 1669
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term rate of change in cropland it does not capture yearly vari-
ability, which is likely controlled by economic or social drivers not
explicitly incorporated into the model.

A visual comparison between GLUDM and HYDE 3.1 cropland
maps show very strong correspondence for the years 1960 and
2005 (Fig. 4). For example, GLUDM predicted the massive expan-
sion and migration of cropland form the east cost of the U.S. to the
mid-west and southern Canada (Fig. 4). To evaluate the spatial
distribution of potential biases, the values of each cell in the
GLUDM predicted map were subtracted from the values in the
HYDE 3.1 dataset for the same year. The absolute value of this dif-
ference was taken to display changes between the two datasets
(Fig. 5). Southeast Asia and the Indian subcontinent show the
greatest biases but overall large differences between GLUDM and
the HYDE 3.1 values tend to be local. The largest percent difference
was 47 (excluding the large urban areas where no agricultural land
was allowed to be allocated) with an average difference of less than
3%. This strong correspondence is to be expected as the regression
equations in GLUDM were developed using the HYDE 3.1 dataset
making them collinear. This comparison is, nonetheless, valuable as
it shows that the algorithmic solution employed in GLUDM (which
differs from HYDE 3.1) is robust, yielding compatible predictions.
Fig. 3. Global population and cropland area between 1960 and 2100. GLUDM predicted
cropland (‘Total Cropland’) match population changes and corresponds well to
“observed” cropland changes from the HYDE 3.1 and FAO Crop datasets (Goldewijk
et al. 2010; FAO, 2013).
The Ramankutty and Foley (1999) dataset was developed before
and independently of the HYDE 3.1 dataset allowing for a direct
comparison of results while controlling for colinearity. The statis-
tical techniques used by Ramankutty and Foley (1999) create a
superficial difference between the datasets. It is difficult to compare
these datasets directly as they uses different land use area scales.
Additionally the two datasets have a slightly different spatial extent
prohibiting cell-to-cell comparison. Fig. 6 shows that, for c.e. 2000,
the areas of high intensity of agriculture compare favorably to the
output created by GLUDM. The Ramankutty and Foley (1999)
dataset has a mean cell value of 10.53 and a standard deviation of
21.25 while GLUDM dataset has a mean cell value of 8.23 and a
standard deviation of 16.54. This indicates the Ramankutty and
Foley (1999) dataset displays both higher and lower concentra-
tions of cropland than the GLUDM dataset.

As an additional validation metric the model output was
compared against the USDA's CropScape dataset (Han, Yang, Di, &
Mueller, 2012). This dataset represents the actual distribution of
farmland cross the United States giving it an extremely high reso-
lution and was selected to see how the distributions predicted by
GLUDM compared to dataset derived from a different spatial scale.
An area was selected at randomwhich corresponded to a portion of
the upper Midwest and was extracted from CropScape. Fig. 7 shows
that aswith theRamankutty and Foley (1999) dataset, the CropScape
data has a greater range of values. Thismay be attributable to scaling
issues or the omission of a key, spatially heterogeneous, variable,
showing that GLUDM tend to smooth out local spatial trends.

3.2. Future cropland predictions

Globally, considerable expansion in agricultural lands is shown
at the end of the 20th century and the start of the 21st century (Fig. 3
and Table 1). GLUDM predicted that global cropland area between
2005 and 2050 would increase by 18%. This value corresponds very
well to previous predictions by other models (Schmitz et al., 2014
cited a range of 10e25% predicted by 7 out of 10 models they
reviewed). This increase in cropland area is most pronounced over
central US, Europe, central Africa, southeastern South America and
eastern Asia (Fig. 8). Relatively small changes in cropland are pre-
dicted after the 2020s. This is because population growth rate is
predicted to decrease after 2020, turningnegative after 2060 (Fig. 3).

The following description of future cropland trends is based on
average cropland area and percent change since the year 2000
(Fig. 9) in 14 regions (Fig.10) andmaps of decadal percent change in
cropland area (Fig. 11):

North and Central America e considerable increases in crop-
land area are predicted for central North America and Central
America during the 2020s. These coincidewith decreases in eastern
U.S. This is a continuation of an historical trend since the middle of
the 20th century (Fig. 4) and GLUDM predicted it would continue,
but at a slower rate, until the 2050s. In the last two decades of the
21st century this trend will inverse leading to widespread decline
in cropland area in central North and Central America.

South America e cropland area is predicted to increase in
northern and southeastern South America up to the 2050s. The rate
of this trend decreases during the first half of the 21st century.

Europe e highly heterogeneous trends are predicted
throughout Europe for the first half of the 21st century. The overall
trend is a decreasing cropland area during the first half of the
century followed by very little change in the second half.

Middle East and North Africa e The northern extents of the
Middle East (Turkey and Iraq) show fairly heterogeneous trends
with a general increase in cropland area at the first half of the
century followed by a decreasing trend at the end of the century
(2080s and 2090s). The most intense trends are along the Tigris-



Fig. 4. The GLUDM dataset is compared against the HYDE 3.1 dataset (Goldewijk et al. 2010) for the years 1960 and 2005 over North America. The squares with low values in the
GLUDM results are urban areas (Hyde 3.1 does not explicitly account for urban areas).

Fig. 5. The difference in each cell value between the Hyde 3.1 dataset (Goldewijk et al. 2010) and GLUDM predicted cropland for the year 2005.

Fig. 6. The GLUDM cropland predictions are compared to the Ramankutty and Foley (1999) dataset for the year 2000.
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Fig. 7. The GLUDM cropland predictions are compared to the CropScape (Han et al., 2012) dataset for the year 2011. This area is located in the Upper Mississippi Valley.
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Euphrates basin in Iraq and northwestern Iran. Most of the Middle
East and North Africa show relatively little change in cropland
during the 21st century.

Tropical Africa e extensive and intense increases in cropland is
predicted for central and southern Africa during the 2020s and 30s.
This trend weakens in the 2040s and is reversed in the last two
Fig. 8. GLUDM predicted cropland for the years 1960
decades of the 21st century. The most substantial changes are
predicted for regions north of the equator and the eastern part of
southern Africa.

Former USSR e similar trend as predicted for Europe. Overall,
relatively small changes in cropland area during the 21st century.

Indian subcontinent (South Asia) e highly heterogeneous
, 1980, 2000, 2020, 2040, 2060, 2080 and 2100.



Fig. 9. (a) Changes in cropland area since 2000 and (b) percent change in cropland area since 2000 in 14 world regions (Fig. 9).
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trends throughout the 21st century. For the 2020se2040s,
considerable decreases in cropland area were predicted in central
India; coinciding with intense increases in northern and southern
India. These trends are reversed in the last two decades of the 21st
century.

East Asia e fairly heterogeneous trends with extensive and
intensive increases in cropland area in most in the southeast and
central China during the 2020se2040s; coinciding with intensive
decreases in eastern China andMyanmar. These trends are reversed
in the last two decades of the 21st century. Overall the changes in
cropland are a considerable increase up to the 2050s followed by
less intense decrease.

Australia e fairly intensive increases in cropland areas were
predicted in southeast southwest Australia during the 2020s and
2030s. These trends are reversed in the last two decades of the 21st
century.

3.3. Spatial trends in regression coefficients and correlation

The spatial distribution of the regression equation slope in each
grid-cell (Fig. 12) provides a more direct mapping of the trend in
cropland area between 1960 and 2005 (the years used to calculate
the equations). The migration of cropland from the east coast of
North America to its central part is clearly visible (positive and
negative slopes respectfully). A result of this migration is the U.S.
Canadian border can be clearly observed as Canadian cropland
expansion in the Northern Great Plains has slowed over the last half
century while it has greatly increased in the U.S. The migration of
cropland from increasing population regions is also visible in
Australia in which the east cost (with the highest population den-
sity) shows a strong negative trend while west and south regions of
the country show increasing trends.

The aforementioned heterogeneity in future cropland dynamics
in Europe and Eastern Asia is clearly explained by the distribution
of past trends (regression equation slope) in these regions (Fig. 12).
Overall, an emerging trend in cropland dynamics is themigration of
food production from many developed countries to developing
countries (from Europe and East Asia to Africa, South America and
South East Asia).

The distribution of the regression equations' R2 (Fig. 13) is
indicative of the correlation between global population trends and
cropland dynamics in each grid-cell. The black color is for grid-cells
with zero cropland. These are mostly high altitude and latitude and
arid regions. These ‘zero cropland’ regions also occupy a large



Fig. 10. World regions used for calculating temporal changes in cropland (Fig. 8). These regions were modified from Ramankutty and Foley (1999).
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proportion of the Amazon Basin. This is because these regions are
completely forested. The central part of the Amazon Basin shows a
particularly low R2 values. North America, Australia and Central
Asia and most of South America (except the Amazon Basin) show
strong correlations. Europe and Africa shows amore heterogeneous
distribution of the R2. More work is needed to elucidate the drivers
and processes leading to these results but overall they suggest that
the effect of global dynamics has a varying degree of influence on
regional agricultural dynamics.

Comparing Figs. 12 and 13 shows that the regression equation
slope is not a significant driver of the correlation R2 (the correlation
coefficient between the two maps is 0.12). This suggests that the
model accuracy is not biased by the rate or direction (increasing or
decreasing) of cropland change.

4. Discussion

Using regression equations to make predictions far into the
future is always problematic, especially when dealing with phe-
nomenon controlled by many variables, as significant abstraction is
necessary to simplify the calculations. A basic assumption made by
GLUDM is that agricultural technologywill continue to increase at a
similar rate as it has in the past. Most experts agree that the
techniques used introduced during the Green Revolution have
reached their maximum effectiveness (Hurtt, Chini, Frolking, Betts,
& Feddema, 2011). Despite this there is reason to believe that a
combination of planting more calorie rich foods, maximization of
cropland, and better harvesting and shipping methods could sus-
tain the current level of increased production (Foley et al., 2005).

Another significant assumption in our model is that future
climate change will not significantly effect the production and
distribution of agricultural land (DeFries, Bounoua, & Collatz,
2002). Excluding this variable may not significantly impact the
total amount of agricultural land needed. While climate changewill
undoubtedly decrease production in the mid-latitudes it may
greatly increase production in the upper latitudes. Unfortunately
these changes will not be captured in the spatial distribution pro-
vided by the current version of the model, unless there is a strong
preexisting relationship that is projected into the future. An
example of this problem is the 45% increase in cropland area above
year 2000 levels in the Western United States. While agriculture
expanded rapidly in the region during the 20th century the current
climate trends of higher temperatures, more frequent drought, and
dwindling groundwater resources may not allow further
expansion.

There are several noteworthy uncertainties with GLUDM pre-
dictions. The first is the global population predictions (the HYDE 3.1
dataset in this paper). Bias in this independent parameter will
directly affect the accuracy of the results. A second issue relates to
the fact that the model does not explicitly account for agricultural
intensity. The total amount of agricultural land under production in
a given area does not necessarily equate to the intensity of agri-
culture at that location. Thus the output from this model alone may
not be suitable for certain applications (e.g. estimating caloric
yield).

The GLUDMmodeling approach may not be very robust for time
periods that come after a decrease in population as the model is
based upon regression equations. For example the global popula-
tion in 2050 and 2084 are estimated to be essentially equal at 9.1
billion. Thus the model will display the exact same outputs for each
of these years. As GLUDM is not an iterative model it does not have
the ability to differentiate between earlier and later points in time.
Thus the shift from agricultural production in central North
America back towards Eastern North America is almost certainly
inaccurate. Because of this deficiency GLUDM seems best suited for
predicting changes in agricultural land use over short intervals into
the future (20e50 years).

GLUDM will serve as a steppingstone toward the development
of a more comprehensive model for predicting the spatial extent of
global agricultural production. The DynaCLUE model has already
shown that through the quantification of environmental and
technological variables it is possible to estimate the potential
agricultural production of an area (Trisurat, Alkemade, & Verburg,
2010). It is also possible to quantify the global requirements of
food and economical drivers. Thus the combination of an agricul-
tural production model with GLUDM, for example, would allow for



Fig. 11. Predicted percent change in global cropland distribution over 10 year intervals from 2020 to 2100. Note that white indicates zero percent change.
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land to be allocated for agricultural production until the potential
production matched the requirements of the global population.
This kind of model development could provide a framework for
investigating agricultural land use scenarios by allowing users to
control all of the variables used in each simulation.
Despite of these limitations and uncertainties, GLUDM offer a
robust first-order estimate of global agricultural land use dynamics
into the future. This is a highly novel product that can benefit a
multitude of earth surface and atmospheric modeling framework
and provide a platform for studying the spatial and temporal



Fig. 12. Regression equation slope as derived from the relationship between cropland area in each grid-cell and global population change between 1960 and 2005.
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dynamics in anthropogenic impact on terrestrial land cover.
The modeling results show some intriguing trends in the future

of the world's biological systems in the next 50 years. East Asia is
predicted to continue on its current trajectory of expanding agri-
cultural land use, loss of environmental services, and dwindling
water resources with a 40% increase in cropland area above year
2000 levels. Adjacent South Asia however will experience only a
slight increase despite its growing population. In this region of
cyclic droughts it is possible the farmers of South Asia have already
tapped all available land suitable for agriculture. Tropical Africa will
see a 40% increase in cropland area to feed its surging population.
This growth will further degrade Sahel and tropical forest ecosys-
tems and may increase the probability of war over resources in this
volatile region (NRC, 2013). Similarly, cropland in Northern South
America is predicted to increase over 50 percent above year 2000
levels with some of the world's most pristine forests being lost to
agricultural expansion.

The model results also show some positive signs. Agricultural
land use in the Eastern United States is expected to decrease by 10%
freeing up land for reforestation, greenways, and nature preserves.
The amount of agricultural land in Europe is also expected to
decrease by 10%. Will this allow for an expansion of Europe's nation
park system and an expansion of the ranges of the European Bison,
European Wolf, and Eurasian Brown Bear? Agricultural production
in the Former USSR is also predicted to decrease slightly. How will
this affect Russia's exports of agricultural products?
Fig. 13. Regression coefficient of determination (R2) as derived from the relationship betwee
5. Conclusion

GLUDM is a gridded, statistical model that uses recent trends in
the relationship between global population and agricultural land
use to calculate regression equation coefficients to estimate the
global distribution of cropland a number of years in the future. A
key strength of this model is that it creates unique regression co-
efficients for each grid cell allowing the model to generate a
spatially explicit output. It offers a much simpler numerical plat-
form for predicting and analyzing future land use trends compared
tomore sophisticated land usemodels. Moreover, GLUDM is easy to
use, easy to customize, and the input data is readily available.
Weaknesses relate to the facts that the regression equations cannot
yet explicitly capture changes in the rate of agricultural produc-
tivity and account for crucial factors in global agricultural product
such as economic, legal, climatological, and technological variables.
Future work on this model will focus on incorporating the variables
listed above.

While it is difficult to validate models which predict future
changes our model results seem reasonable given “hindcast”
comparisons to other datasets. This was true through comparisons
to large scale datasets such as the HYDE 3.1 and the Ramankutty
and Foley (1999) dataset as well as to small scale datasets such as
the USDA's CropScape. Globally, 18% increase in cropland area is
predicted between 2005 and 2050 which corresponds very well to
previous estimations. Following 2050, a general decrease in
n cropland area in each grid-cell and global population change between 1960 and 2005.
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cropland area is predicted. GLUDM predicts surges in agricultural
land use in Northern South America, East Asia, and Tropical Africa
while predicting decreases in agricultural production in Europe and
Eastern North America. These predictions carry a number of im-
plications for future biodiversity, environmental degradation and
economic development in these areas.
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