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Abstract
River deltas are important coastal depositional systems that are home to almost half a billion people worldwide. Understanding
morphology changes in deltas is important in identifying vulnerabilities to natural disasters and improving sustainable planning
and management. In this paper, we critically review literature on satellite remote sensing techniques that were used to study delta
morphology changes. We identify and categorize these techniques into 3 major classes: (1) one-step change detection, 2) two-
step change detection, and (3) ensemble classifications. In total, we offer a review of 18 techniques with example studies, and
strengths and caveats of each. Synthesis of literature reveals that sub-pixel-based algorithms perform better than pixel-based ones.
Machine learning techniques rank second to sub-pixel techniques, although an ensemble of techniques can be used just as
effectively to achieve high feature detection accuracies. We also evaluate the performance of the 7 most commonly used
techniques in literature on a sample of global deltas. Findings show the unsupervised classification significantly outperforms
the others, and is recommended as a first-order delta morphological feature extraction technique in previously unknown, or, data
sparse deltaic territories. We propose four pathways for future advancement delta morphological remote sensing: (1) utilizing
high-resolution imagery and development of more efficient data mining techniques, (2) moving toward universal applicability of
algorithms and their transferability across satellite platforms, (3) use of ancillary data in image processing algorithms, and (4)
development of a global-scale repository of deltaic data for the sharing of scientific knowledge across disciplines.
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1 Introduction

1.1 The River Delta and Its Importance

A river delta is defined as a discrete shoreline protuberance
formed from deposition of sediment where rivers enter
oceans, semi enclosed seas (coastal embayments), lakes, or
lagoons (adapted from [46]). Deltaic regions are home tomore
than 490 million people, including several megacities [158].
These hubs act as major centers for agriculture [158], fisheries
[174], and hydrocarbon production [159], offering employ-
ment opportunities for millions, and consequently making

deltaic regions some of the most economically productive
systems in the world [174]. The ecological significance of
river deltas lies in the fact that they act as coastal storm surge
protectors, biodiversity hotspots, provide habitats for many
animal and plant species, provide pathways for migratory spe-
cies, and carry with them a cultural heritage which is a high
revenue generation mechanism for local communities [68,
88].

1.2 The Morphology of a Delta

Morphology, in the simplest of terms, is the configuration or
form of a river delta in its natural environment. The morphol-
ogy of modern deltaic systems (so named because their
formation/progradation began during the late Holocene peri-
od, subsequent to the last glacial period; [9]) is controlled by
the complex interaction between boundary conditions and
forcing factors [27, 128, 136, 158]. These forcing factors in-
clude (1) supply of bedload and suspended sediment load:
reflecting drainage basin characteristics, water discharge,
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sediment yield, and grain size; (2) deposition/accommodation
space: reflecting sea-level fluctuations, offshore bathymetry,
tectonics, subsidence, compaction, and isostasy; (3) coastal
energy: reflecting waves and tides, longshore, and cross-
shelf transport; and (4) density differences between effluent
and receiving waters defining the dynamics of sediment
plumes. The complex interaction among these factors results
in the formation of different features (e.g., main delta land-
mass governed by the delta shoreline, sandbars/barrier islands,
beach spits). These features, which are component environ-
ments of the delta, collectively describe the morphology of the
delta, reflect the status quo of the river delta, and can be used
to monitor changes to the delta through time.

1.3 Importance of Delta Morphology Change Studies

Most modern deltas serve societal needs such as protecting
residents, resources, and infrastructure, or preserving biodi-
versity and ecosystem services. Human settlements and infra-
structure in low-lying deltaic regions are particularly vulnera-
ble to floods induced by intense precipitation and storm surges
[115, 141]. Floods disrupt cultivation in delta plains, livestock
farming, destroy property leading to displacement of house-
holds, interrupt water reticulation systems, and curtail trans-
port systems, thereby impacting a country’s economic growth
significantly [13, 115]. Therefore, knowledge on morphology
change is important to plan engineering works such as identi-
fication of vulnerable areas, installation of coastal defense
structures (e.g., breakwaters, weirs), confinement or widening
of river channels, dredging, sand extraction, dam construction,
development of setback planning, and hazard zoning.

In addition to mitigate against flooding, delta morphology
change information is also important for constructing engi-
neering structures for transport, land reclamation and urbani-
zation, erosion-accretion studies, regional sediment budgets,
restoration activities for extensively altered deltas, and for
concep t u a l o r p r ed i c t i v e mode l i ng o f coa s t a l
morphodynamics (Sherman and Bauer 1993; Al Bakri 1996;
Zuzek et al. 2003; see Maiti and Bhattacharya [103]; [85,
111]). Therefore, understanding and predicting these mor-
phology change dynamics is of utmost importance for sustain-
able planning of deltaic communities.

1.4 Satellite Remote Sensing of Deltaic Morphology
Dynamics

During the past four decades, satellite remote sensing technol-
ogies have emerged as a viable alternative to in-situ observa-
tions of river deltas and associated delta plain morphology
changes (Fig. 1: evolution of the Yellow river delta during
the satellite era). This is mainly attributed to their availability
over large geographical regions, the effectiveness of the delta-
change mapping techniques, the temporal coverage of a given

location, and the relatively low cost for large aerial extents
[112, 118, 185, 190]. Although delta morphology mapping
based on ground surveys and aerial observations (e.g., aerial
photography, drone footage) is a viable and useful option,
such methods are time-consuming, expensive, and, in most
cases, cannot provide data on time scales commensurate with
delta morphology change. Remotely sensed data can be seam-
lessly used as a stand-alone tool, or in tandem with comple-
mentary numerical modeling and statistical efforts.

1.5 Motivation for This Review

The impetus for this review comes from the non-availability
of a single robust document in the literature which portrays
past and current research efforts in identifying river delta mor-
phology changes using satellite remote sensing techniques.
The need for such a summation stems from several reasons.
Morphology detection techniques that work well for one par-
ticular river delta might not be ideal for another: This could be
due to complications of geometries of river deltas (e.g., influ-
enced by islands, sandbars), sediment plumes transported by
rivers (gradational deposition at the river mouth) making the
identification of the delta boundaries difficult, geographical
location of river delta (governs the type and density of vege-
tation that grows at the land-sea margin), and tidal forces
(determines formation of islands close to the main delta body
due to breakage) which all act in varying degrees in determin-
ing the performance accuracy of algorithms. This has led to
morphology detection algorithms to mostly be location spe-
cific. A summation of knowledge as such also aids in mor-
phology detection algorithm selection and application to less-
er studied deltaic systems globally, done informatively. The
transfer of knowledge from prior use cases could be done
informatively (by relative comparison of similar delta forms
and geographical regions) and with caution (prior understand-
ing of limitations of detection algorithms). Thus, for current
research frontiers in deltaic research to expand, a need arises
for a comprehensive, organized summary of historical and
emerging techniques of delta change mapping of key deltaic
environments.

We also perform a comparison of remote sensing tech-
niques on an array of delta types (river-, tide-, wave-dominat-
ed) from a global sample of deltas to understand the perfor-
mance of techniques under varying fluvial and marine condi-
tions. Elucidating which technique(s) work best in delta mor-
phological feature extraction would allow us to infer why
particular techniques underperform in different regions of
the world. This will also highlight some of the inherent prob-
lems of particular techniques and will offer a pathway for
improving existing algorithms and development of new ones
to monitor river delta morphological change.

This document reviews the content of 146 articles/book
chapters which used remote sensing technologies to detect
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deltaic features and their changes, and a further 38 articles/
book chapters to gather supplementary information on river
delta research and technological advances in computational
algorithm development. Every effort has been taken to cover
the breadth of remote sensing techniques that were used in
delta morphology research from 1980 until present day.

2 Indicators of Delta Morphology Change

A river delta is a collection of different component environ-
ments (as described in Section 1.2). Changes to these compo-
nents result in the changes in geometries, sediment facies, and
depositional architecture of the delta. Thus, these components
can be used as “indicators” to assess changes to the morphol-
ogy and can be quantitatively used to derive delta evolution.
For example, a decrease in sediment fluxes to the delta can
move it from a condition of active growth to a destructive
phase portrayed by the recession of the land-sea margin (i.e.,
the delta shoreline). In a second example, strong wave cli-
mates effectively diffuse fluvial sediment, thereby limiting
mouth bar growth and make the delta mainland more erosion
prone, and vice versa. Therefore, as per the above two exam-
ples, the delta shoreline and presence/absence of mouth bars
can be used as indicators to assess changes to river delta
morphology.

Although there exist a plethora of morphology change in-
dicators, it has to be noted that the focus of this review will
only be on (a) indicators that can be identified using satellite
remote sensing (e.g., shelf depth, (water depth reached by the
submerged delta), although a factor governing delta morphol-
ogy, cannot be assessed using satellite remote sensing), and
(b) indicators that directly reflect morphology-change of a
delta (e.g., indicators reflecting changes to the effective deltaic
landmass (i.e., the shoreline)) as opposed to indicators of

forcing factors which act as causal factors of morphology
change (e.g., drainage basin-averaged climate, which in turn
can have an effect on erosion of delta plain and sediment
loading into feeder river).

Based on above selection criteria, we categorize all
satellite-detectable indicators which reflect morphology
change into 5 classes summarized from studies conducted by
Syvitski and Saito [158], Mathers and Zalasiewicz (1999),
Ulrich et al. [165], and Passalacqua [134]. Table 1 provides
an overview of these indicators, and the role they play in
structuring the overall morphology of the delta.

The change in deltaic shoreline can be regarded as the most
important environmental descriptor of delta morphology, as it
is the only parameter that reflects the “quantity” of landmass
available for human consumption indicating how the delta
front prograded or degraded over the years. In comparison,
other indicators detect morphology changes “on” the deltaic
landmass and thus have garnered a lesser importance in liter-
ature (over 90% of the studies reviewed for morphology
change were based on the shoreline). Delta shoreline changes
are described in Section 3, and studies discussing all other
indicators are summarized in Section 4.

3 Delta Shoreline Change Detection
Techniques

Delta progradation/degradation determination through remote
sensing relies on the varied spectral response of the land-water
boundary (i.e., the shoreline) at different wavelengths.
Different landforms produce characteristic surface spectral re-
sponses as products of the combination of the terrain color and
surface moisture linked with composite materials, texture, and
structure properties of the exposed portions, terrain geometry
and land cover. A large number of techniques for delta

Fig. 1 Landsat satellite imagery showing the evolution of the Yellow River Delta, China from 1988 to 2018. The circled area shows the downward
development of the Qingshuigou Lobe, and the more prominent upward development of the Qing8 Lobe of the delta
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progradation detection from satellite imagery have been de-
veloped over the years and can be classified into three broad
categories of change detection methods (Fig. 2): (1) two-step
change detection: use of a remote sensing technique(s)
to delineate morphology for a particular time step, use
the same or different set of technique(s) to retrieve mor-
phology at a different time step and compare between
them, 15 such techniques will be discussed; (2) one-step
change detection: the use of a remote sensing tech-
nique(s) on multidate imagery to detect change in one
step; two such techniques will be discussed: (a) layer
arithmetic: use of band mathematics on the reflectance
values to compare between multi-date imagery, (b)

change vector analysis: use of the radiometric properties
of multi-date imagery to yield both magnitude and di-
rection of change, and (3) ensemble classification: use
of a mixed methods approach.

It is important to note, and user applications need to
pay attention to the fact that, the location of a shoreline
on a satellite image might not be the topographical
boundary between land and water as it is an instanta-
neous one influenced by seawater level fluctuations
caused by waves, tides, and local seasonal sea level
changes. Therefore, it would be erroneous to apply said
shoreline detection techniques to a single image repre-
sentative of a time step, as these external forces can

Table 1 Change indicators and their representation of delta morphology

Class Indicator Role of indicator in delta morphology change representation Can be
remotely
sensed? (Y/N)

Included in
review?
(Y/N)

1 Shoreline Governs the land-sea margin, determines the effective landmass available for
human consumption, and determines subaerial view (plan view) of the
delta.

Y Y

2 Crevasse splays and channel
avulsions

Channel avulsions in deltaic areas start with the formation of a crevasse splay.
Crevasse splays (deposits of sediment in the shape of a fan or lobe formed
by river channels as a result of point failures of a levee) help better
understand how rivers naturally distribute water and sediment across
floodplains, local rates of sediment accumulation and sediment delivery to
coastal regions, and influences on floodplain topography and alluvial
architecture, and help make informed decisions on land-management so-
lutions such as engineered diversions [125].

Y Y

3 Number and size of distributary
channels, and meander belts

Avulsions and other channels on the delta make up the distributary network.
Proper understanding of the size of the distributary channels and the ways
in which they migrate through time is critical to many geomorphological
and river management problems on a delta [144, 181]. Channel erosion and
bank failure cause obstruction of navigation routes, changes to channel
geomorphology, and most importantly changes to flood levels which can
have adverse impacts on the infrastructure of the delta plain.

Y Y

4 Barrier islands, beach spits, and
mouth bars

These are deltaic features that result from the dynamic interaction of fluvial
sediment supply and the redistribution of sediment by marine processes at
the river mouth-sea interface. Rapid deposition on river-mouth bars can
cause their seaward progradation, which, through the control of upstream
siltation in the main river channel, can serve as a stimulus to river channel
migration. Heavy sedimentation in the lower reaches of the river channel
can also cause the riverbed to aggrade and increases the flood risk on the
floodplain, making the river channel avulsion-prone. Beach spits and bar-
rier islands function more in the capacity of coastal storm surge attenuation
and wave and tidal erosion control which impact the shoreface.

Y Y

5 Gradient of delta plain Measured from the apex of the delta to the coast along the main channel [158],
the gradient of the delta plain is a vertical measure of morphology. This in
addition to the sediment supply to sediment retention on the delta plain, can
be significantly impacted by subsidence of the delta plain itself. Subsidence
related morphological changes to the gradient might not be reflected by the
land-sea boundary but can be reflective in flood extents during extreme
events which impact floodplain architecture.

Y aN

a Studies pertaining to the gradient of the delta plain will not be discussed in this review for two reasons. Firstly, the majority of the studies related to the
gradient in the literature are from a geological perspective without any substantial remote sensing component to them. Thus, they do not scope well
within the constraints of this review. Secondly, even the studies that did discuss remotely sensed changes in river delta gradient were done so as
secondary derivatives of changes in land subsidence of the delta. Subsidence mapping is an entirely vast and different field of remote sensing which
would constitute a separate review of its own
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substantially affect water levels [168] and consequently
the boundary, without necessarily indicating a morpho-
logical change. There are statistical methods to correct
for the shoreline position [187] if changes of shorter
time steps are desired (e.g., change every year during
a 5-year period). For longer time scale analysis (e.g.,
change every 5 years for a 30-year period), a compos-
ite, representative of the deltaic region, using imagery
over a few consecutive months (e.g., 6 months), is cre-
ated, and the averaged raster is used as a single time
step.

The discussion of each technique is framed on the
conceptual background of the technique, how and why
it is applied to deltaic feature detection, the technical
merit of application, and its caveats informed by the
conclusions and recommendations of the literature
reviewed. We present a summary of all techniques
reviewed in this paper along with example studies in
Table 2 below for the readership to revert to, during
the length of the document, as a quick reference guide.

3.1 Classification Techniques Used in Two-Step
Change Detection

3.2 Pixel-Based Methods

3.2.1 Manual Digitization

Deltaic coastlines are delineated manually based on the delin-
eator’s/digitizer’s knowledge of the morphological features,
vegetation, and sediment characteristics of the delta.
Compared to computer aided classification techniques, man-
ual operation takes advantage of the judgment skills and in-
terpretation of humans in defining what and where the bound-
ary is between land and water.

The combination of digitization and automatic boundary
detection algorithms (discussed later) to detect the land–
ocean shoreline boundaries were proven to be successful
[77]. However, this technique has several inherent problems.
In addition to the inaccuracies induced through the monoto-
nous nature of digitization, it is also challenging for the human

Fig. 2 Classification of remote sensing techniques used for river delta morphology change detection
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Table 2 A summary of remote sensing techniques of river delta morphology change identification

Technique Example studies River delta (country) Satellite platform

Manual digitization Yang [180] Yellow (China) Landsat MSS, Landsat TM

Yang et al. [181] Yellow (China) Landsat MSS, Landsat TM

Chu et al. [23] Yellow (China) Landsat MSS, Landsat TM

Zhao et al. [190] Yangtze (China) Landsat TM, Landsat ETM+

Marghany et al. [107] Kuala Terengganu (Malaysia) ERS-1, RADARSAT-1

El Asmar and Hereher (2011) Nile (Egypt) Landsat MSS, Landsat TM, SPOT-4

Kuenzer et al. [79] Yellow (China) Landsat MSS, Landsat TM

Duţu et al. (2014) Danube (Romania/Ukraine) Landsat TM, Landsat ETM+

Ahmed et al. [4] Ganges-Brahmaputra-Meghna (India) Landsat TM, Landsat ETM+

Density slicing Mouchot et al. [116] Mackenzie (Canada) Landsat TM

Mathers and Zalasiewicz [112] Red (Vietnam) Landsat TM

Ryu et al. [138] Gosmo Bay (Korea) Landsat TM, ASTER

Maiti and Bhattacharya [103] Subarnarekha and Rasulpur (India) Landsat MSS, Landsat TM, Landsat ETM+,

ASTER

Mallinis et al. [104] Nestos (Greece) Quickbird

Allen et al. [8] Wax Lake (USA) Landsat TM, Landsat ETM+

Kong et al. [77] Yellow (China) Landsat MSS, Landsat TM, Landsat ETM+

Ghoneim et al. [56] Nile (Egypt) Landsat MSS, Landsat TM, Landsat ETM+

Dada et al. [31] Niger (Nigeria) Landsat TM, Landsat ETM+

Image segmentation and edge

detection

Lee and Jurkevich [87] Chesapeake Bay (USA) Saesat, Shuttle Imaging Radar (SIR)

Mason and Davenport [110] Wash delta/estuary (UK) ERS-1

Niedermeier et al. [124] Elbe (Germany) ERS-1 and ERS-2

Bayram et al. [12] Bhosporous (Turkey) Corona, IRS-1D, Landsat ETM+

Al Fugura et al. [7] Kuala Terrenganu (Malaysia) RADARSAT-1

Band ratioing Yang et al. [181] Yellow (China) Landsat MSS, Landsat TM

El-Raey et al. [45] Nile (Egypt) Landsat MSS

Ryu et al. [138] Gosmo Bay (Korea) Landsat TM, ASTER

Guariglia et al. [61] Ionian coast (Italy) inclusive of deltas Landsat TM, Landsat ETM+, SPOT XS,

Corona

Ekercin [40] nothern coast of Turkey including deltas Landsat MSS, Landsat TM, Landsat ETM+

Kuleli [80] Cukurova (Turkey) Landsat TM

Cui and Li [30] Yellow (China) Landsat MSS, Landsat TM, Landsat ETM+

Mukhopadhyay et al. [117] Puri coast and Mahanadi (India) Landsat TM

Niya et al. [127] Dalaki (Iran) Landsat TM

Kundu et al. [81] Sagar Island, GBM (India) Landsat TM

Louati et al. [100] Medjerda (Tunisia) Landsat TM, Landsat ETM+, Landsat OLI

Nitze and Grosse [126] Lena (Russia) Landsat TM, Landsat ETM+, Landsat OLI

Sun et al. [156] Yangtze (China) Landsat MSS, TM, OLI, GF-1 PMS,

SPOT-7

Wang et al. [169] Yellow (China) Landsat TM, Landsat OLI

Da Silva et al. [32] Parnaíba (Brazil) Landsat MSS, TM, ETM+, OLI

Viaña-Borja and

Ortega-Sánchez [167]

Guadalfeo, Adra, and Ebro (Spain) Landsat TM, Landsat ETM+, Landsat OLI

Unsupervised classification Wilson [173] Fitzroy (Australia) Corona

Frihy et al. [53] Nile (Egypt) Landsat MSS, Landsat TM

Guariglia et al. [61] Ionian coast (Italy) inclusive of deltas Landsat-TM, Landsat ETM+,

SPOT-PX/XS, Corona

Ekercin [40] nothern coast of Turkey including deltas Landsat MSS, Landsat TM, Landsat ETM+

Nath and Deb [122] Okavango Delta (Botswana) AVHRR

Mukhopadhyay et al. [117] Puri coast and Mahanadi (India) Landsat TM

Muster et al. (2012) Lena (Russia) Proba −1
Kundu et al. [81] Sagar Island of the GBM (India) Landsat TM

Buono et al. [19] Yellow (China) RADARSAT-2
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Table 2 (continued)

Technique Example studies River delta (country) Satellite platform

Supervised classification Sgavetti and Ferrari [147] Po and Adige (Italy) Landsat TM

Ciavola et al. (1999) Shkumbini, Semani and Vjosȅ (Albania) Landsat TM

Seker et al. [143] Riva (Turkey) Landsat MSS, Landsat TM, Landsat ETM+

El-Kawya et al. [43] Nile (Egypt) Landsat TM, Landsat ETM+

Masria et al. [111] Nile (Egypt) Landsat TM, Landsat ETM+

Transformation methods

Principal component analysis (PCA) El Raey et al. [44] Nile (Egypt) Landsat MSS, Landsat TM

Li and Yeh [92] Pearl (China) Landsat TM

Kushwaha et al. [82] West Bengal coast inclusive of deltas

(India)

ERS-1

Seto et al. [146] Pearl (China) Landsat TM

Li and Yeh [93] Pearl (China) Landsat TM

Ghanavati et al. [55] Hendijan (Iran) Landsat TM, Landsat ETM+

Ghoneim et al. [56] Nile (Egypt) Quickbird, Worldview-2

Tasseled cap transformation Nandi et al. [121] Sagar Island, GBM (India) Landsat MSS, Landsat TM, Landsat ETM+

Chen et al. [22] Yangtze (China) Landsat OLI

Artificial neural networks (ANN) Berberoglu et al. [14] Cukurova (Turkey) Landsat TM

Zhu [191] Pearl (China) Landsat MSS, Landsat TM

Del Frate et al. [33] Italian coastline inclusive of deltas COSMO-SkyMed

Ding [39] Yellow (China) Landsat TM, Landsat ETM+

Decision trees and random forest

classifiers

Ottinger et al. [129] Yellow (China) Landsat TM

Kuenzer et al. [79] Niger (Nigeria) Landsat TM, Landsat ETM+

Haas and Bun (2014) Yellow, Pearl (China) Landsat TM, HJ-1A/B satellites

Banks et al. [10] Kitikmeot region (Canada) inclusive of

deltas

RADARSAT-2, Landsat TM

Berhane et al. [15] Selenga (Russia) Worldview-2

Bayesian networks Gutierrez et al. [63] U.S. Atlantic Coast inclusive of deltas

Yates and Cozannet [182] European coasts inclusive of deltas Areal observations used as input

Support vector machines Xu et al. [179] Yellow (China) RADARSAT-2

Masria et al. [111] Nile (Egypt) Landsat TM, Landsat ETM+

Petropoulos et al. [135] Axios and Aliakmonas (Greece) Landsat TM

Gou et al. [60] Yellow (China) ALOS-2

Object-based image analysis Cao et al. [20] Yellow (China) SPOT 5

Liu et al. [94] Yellow (China) Landsat TM, Landsat ETM+, HJ-1A/B

satellites

Demers et al. [35] Islands of Mackenzie Delta (Canada) RADARSAT-2

Zhu et al. [192] Yellow (China) Landsat MSS, Landsat TM, Landsat OLI

Fuzzy logic Dellepiane et al. [34] coastline in Genova (Italy) inclusive of

deltas

ERS-1, ERS-2

Foody et al. [50] coast in Terengganu (Malaysia) inclusive

of deltas

IKONOS

Ghanavati et al. [55] Hendijan (Iran) Landsat TM, Landsat ETM+

Dewi et al. [38] deltaic region in the Sayung District

(Indonesia)

Landsat TM, Landsat ETM+, Landsat OLI

Spectral mixture analysis Liu et al. [95] Yellow (China) Landsat OLI

Liu et al. [96] Pearl (China) Landsat OLI

Sub-pixel analysis Wei et al. [171] Yellow (China) ASTER

Image differencing Yeh and Li [183] Pearl (China) Landsat MSS, Landsat TM

Xia [176] Pearl (China) Landsat TM

El-Raey et al. [45] Nile (Egypt) Landsat MSS

Adegoke [3] Niger (Nigeria) Landsat TM, Landsat ETM+

Change vector analysis El-Raey et al. [45] Nile (Egypt) Landsat MSS

Seto et al. [146] Pearl (China) Landsat TM
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eye to interpret the boundary (based largely on digitizer’s
experience) since, mainly in low-resolution images, color
shades may decay gradually [123]. Presence of water-
saturated zones in the vicinity of the land water boundary
could complicate the issue. Therefore, calculations have to
be performed in order to recognize if the inaccuracies consti-
tute a significant source of error in comparison to the magni-
tude of the overall changes in the delta [23]. This approach is
also highly time-consuming and tedious. It is therefore expen-
sive (labor cost) and ineffective when a large number of im-
ages need to be analyzed.

3.2.2 Density Slicing

The concept of density slicing involves classifying the remote-
ly sensed image into land and sea, often by identifying a
threshold value for a single spectral band. In order to deter-
mine this critical threshold without bias, a histogram analysis
is often performed (Fig. 3). Ryu et al. [138] and Shen et al.
[150] showed that in tidal flat zones, thermal-infrared (TIR)
band is the most sensitive to the location of waterline through
density slicing. Work on Landsat has shown that mid-infrared
bands (band 5 in the case of Landsat TM) is the most suitable
for extracting the land water interface because it exhibits a
strong contrast between land and water features due to the
high degree of absorption of the mid-infrared wavelength by
water [6, 51, 74, 86, 106].

While overall successful, this method carries with it certain
caveats. Although land and water generally appear to be spec-
trally separable, the accuracy of waterline prediction is some-
times low due to the dynamic and complex land-water inter-
actions in coastal deltaic regions. This could be due to spectral

confusion, arising from effects such as variable depth and
turbidity, together with the spatial resolution of the imagery,
which influences the clarity of boundaries and proportion of
mixed pixels, limiting the accuracy of shoreline mapping [51,
105, 138]. Also, the use of one spectral band usually does not
allow every type of change to be detected [58]. Density slicing
alone is not sufficient in determining the shoreline and, there-
fore, typically used in conjunction with other methods to ob-
tain higher delta shoreline classification accuracies [107].

3.2.3 Image Segmentation and Edge Detection

Image segmentation and edge detection algorithms follow the
process of manual digitization more closely by dividing an
image into different regions where sharp intensity alterations
occur. The “alternative connective approach”, one of two ma-
jor image segmentation and edge detection algorithms, is used
in deltaic research where it seeks to grow homogeneous re-
gions by merging pixels or sub-regions on the basis of some
similarity criterion [84]. This approach is based on “guiding”
the remote sensing software by manually identifying points
along the shoreline of the original image. The software then
examines the edges of the image following these points. The
parameters by which the shoreline is identified are determined
by the analyst. This heuristic search is found to be faster and
more reliable than entirely automated approaches [99] due to
the input of previously gathered information by the analyst.

Albeit its success, this method also has its limitations in
possible inclusion of different earth feature classes into the
same region, making spectral separation and subsequent iden-
tification of thematic information classes difficult. As White
and El Asmar [172] and Heimann et al. [65] stated, since the

Fig. 3 Density slicing of band 5 (Landsat TM) of the Danube delta region to obtain a land-water raster. The shoreline was subsequently extracted using
GIS methods
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classical region growing methods (classifying neighboring
pixels outward from a point of origin based on similarity of
reflectance of the originating pixel) yield outcomes in accor-
dance with the contrast of the image, contrast similarities be-
tween land and water zones impedes the extraction of coast-
line from other existing constituents and could result in irreg-
ularities of coastline extractions.

3.2.4 Band Ratioing

This method exploits the near-infrared (NIR) and short-wave
infrared (SWIR) bands whose wavelengths are absorbed by wa-
ter, resulting in surface water rendered as black color in the
processed image. A combination of these spectral bands
((NIR-SWIR)/(NIR + SWIR)) is used to reduce the effect of
suspended sediment near shorelines [97, 98] and accentuate
higher reflectance characteristics from soil and healthy vegeta-
tion, providing a context for the land/water interface ([17];
Fraizer and Page 2000; [61]). In comparison to other methods,
ratioing is a relatively rapidmeans of identifying areas of change.

However, there are certain downsides to this method. The
Band 2/Band 5 ratio has a value greater than one for water and
less than one for land in large areas of the coastal zone [6].
Image processing software use this ratio as an algorithm for
separating water from land from TM or ETM+ imagery. This
ratio works well in coastal zones covered by soil, but not in
land with vegetative cover. This can lead to mistakenly clas-
sifying other land use types as water [6]. Therefore, this is a
readily go-to method if the aim is to rapidly extract the coast-
line. However, if the goal is accurate coastline extraction, then
this might not be the most suitable. Figure 4 below shows an
example application we conducted on the Irrawaddy delta in
the shoreline extraction process using Landsat-8 imagery.

3.2.5 Unsupervised Classification

Unsupervised classification is an effective method of natural
clustering and extracting land-cover information of remotely
sensed image data based on spectral properties of pixels.
Compared to supervised classification (discussed in
Section 3.1.6), unsupervised classification requires minimal
initial input from the analyst (determining the clustering algo-
rithm and desired number of classes) as it does not require
training data. The clustering process results in a classification
map consisting of n spectral classes. The analyst then attempts
to assign or transform the spectral classes into thematic infor-
mation classes of interest (e.g., forest, agriculture). Many clus-
tering algorithms have been developed to date (e.g.,
ISODATA Clustering, K-Means).

Unsupervised methods, although not completely exempt
from the user’s interaction, require less inputs than their su-
pervised counterparts and is computationally efficient.
However, the user must have knowledge of the area and

understand the spectral characteristics of the terrain in order
to relate the classes to actual land cover types (such as water
features, wetlands, developed areas, coniferous forests, etc.).
Difficulties in obtaining consistent classes from images taken
at different times, owing to variability in illumination, atmo-
spheric effects, and instrumental response, have been reported
[1]. Also, some spectral clusters may be meaningless because
they represent mixed classes of earth surface materials. It has
been noted in the literature that although the use of unsuper-
vised classification is nearly a labor-independent analysis, this
technique does not lead to the most detailed analysis and can-
not produce the highest classification accuracy [28, 47, 176].

3.2.6 Supervised Classification

In supervised classification, the analyst selects sample pixels
in an image that are representative of land cover classes, and
then directs the image processing software to use these end-
member pixels (training pixels) as references for the classifi-
cation of all other pixels in the image (determination of max-
imum likelihood of image pixels of a land use class based on
training data). Training sites are selected based on the ana-
lyst’s knowledge and experience of image interpretation.
The analyst also designates the number of classes that the
image is classified into.

Since supervised classification is based on prior knowledge
about the land cover and their typical spectral characteristics by
the analyst, this method is deemed one of the more successful
methods of delta morphology detection and is commonly used
as a benchmark to test other algorithms [75]. Higher classifica-
tion accuracies resulting from supervised classification motivat-
ed researchers to combine this technique with other methods.
Shalaby and Tateishi [149], for example, concluded that the use
of a combination of supervised classification and visual inter-
pretation analysis increased the overall classification accuracy
by approximately 10%. However, because the training sites are
selected based on the knowledge and experience of the analyst,
there is always the possibility that the sample pixels that one
selects for a given information class (e.g., shoreline) will not be
homogenous across the entire study domain (i.e., training areas
will not encompass unique spectral signatures of a particular
land feature). In addition, since this is a user-driven method, it
can be a time consuming and an exhaustive one, if done for
multiple time steps over different study domains.

3.2.7 Transformation Methods

When multispectral images are used to detect change of delta
morphology, a reduction of the number of bands is often war-
ranted in order to identify dominant patterns in the imagery
(i.e., enhance the original classification feature space) without
compromising the variance. Although simple band mathemat-
ics can be used and is straightforward (e.g., density slicing,

Remote Sens Earth Syst Sci

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



band ratioing), it can be inefficient when the number of spec-
tral bands of the image exceeds three. To overcome these
difficulties, the process of image transformation was intro-
duced. Different transformationmethods have been developed
over the years, and two of those have been reported in delta
morphological studies: principal component analysis (PCA)
and Tasseled Cap analysis (TCA).

The central concept of a PCA is to reduce the dimension-
ality of a dataset consisting of many interrelated variables,
while retaining as much variation present in the dataset as
possible. This is achieved by transforming the data to a new
set of variables (principal components) which are uncorrelated
and ordered so that the first few retain most of the variation
present in all the original variables [36]. The procedure works
as such that subsequent to performing a PCA on multi tempo-
ral imagery, conventional clustering methods (e.g., unsuper-
vised) can be applied to the first few principal components to
produce thematic maps representative of different earth fea-
tures. This method was shown to improve accuracy gains
when utilized with other techniques in the image classification
process [75].

Although comparatively PCA analysis has advantages over
simple band mathematics techniques (i.e., band ratioing, band
differencing), it introduces difficulties in interpreting and la-
beling each component image (to associate physical scene
characteristics with the individual components). This type of

analysis is also scene dependent and is difficult to obtain the
“from-to change” class information (change in pixel informa-
tion from an earlier time step to a later one) when detecting
change over multiple time steps. Moreover, it was found that
the application of PCA for multiple time step analysis is sub-
ject to the condition that the areas of change must be a small
proportion of the entire study area [58, 146].

TCA transformation rotates multispectral data and
creates three planes: brightness (B), greenness (G), and
wetness (W) [29]. The brightness band is a weighted
sum of all reflective bands and can be interpreted as
the overall brightness or albedo at the earth’s surface.
The greenness band primarily measures the contrast be-
tween the visible bands and near-infrared bands and is
similar to a vegetation index. The wetness band mea-
sures the difference between the weighted sum of the
visible and near-infrared bands and the mid-infrared
bands and is a proxy of plant and/or soil moisture
[146]. In TCA, the brightness, greenness, and wetness
bands are directly associated with physical scene attri-
butes and therefore easily interpreted (Fig. 5). TCA
analyses to detect delta morphological change is seldom
carried out alone and is used as a data reduction tech-
nique prior to the data being analyzed by another tech-
nique(s). Examples of the usage of TCA are given in
Section 4.3.

Fig. 4 Band ratioing of Landsat-OLI imagery of the Irrawaddy river delta
to produce a land-water raster after which the shoreline is extracted using
GIS methods. The combination and ratio used here is the Modified
Normalized Water Index (MNDWI; [178]) used to accentuate water fea-
tures. Left: A subtracted difference raster of Band 6 (SWIR) and Band 3

(Green) is generated (the blow-up denotes raster values of the selected
region).Middle: An added difference raster of Band 6 (SWIR) and Band
3 (Green) is generated. Right: The difference-rasters are ratioed to pro-
duce the MNDWI feature-accentuated raster
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3.2.8 Artificial Neural Networks

Artificial neural networks (ANN), a form of artificial intelli-
gence (AI), can be used to semi-automate image classification,
and has become a common alternative to conventional band
statistical approaches. The development of ANNs was in-
spired from human brain recognition and brain learningmech-
anisms [14]. Neural networks consist of input and output
layers, as well as (in most cases) a hidden layer consisting of
units that transform the input into something that the output
layer can use [48]. They are excellent tools for finding patterns
which are far too complex or numerous for a human program-
mer to extract and train the machine to recognize [140].

The backpropagation algorithm [133] is the most common
method of training multi-layer networks to date [140], with an
emphasis on its application to pattern recognition in multi-
spectral imagery. It allows networks to adjust their hidden
layers of neurons in situations where the outcome does not
match what the user is hoping for [140], similar to a network
designed to recognize muddy shores, and misidentifies them
as turbid waters.

As delta evolution is a very intricate non-linear process
influenced by many factors such as water and sediment dis-
charges and coastal dynamics, neural networks possess great
robustness over traditional classifiers in that they are inherent-
ly nonparametric nature. The strengths of a neural network lie
in arbitrary decision boundary capabilities (the ability to par-
tition the data set into separate classes effectively), easy adap-
tation to different types of data and input structures, possibility
of fuzzy output values (probability of a pixel belonging to a
certain information class type) that can enhance classification
accuracies (classification accuracies of fuzzy outputs are
discussed in the Fuzzy logic section), and good generalization
for use with multiple images. Land/water rasters created using
neural networks are later used with GIS methods to extract
deltaic shorelines. The disadvantages of the method are incon-
sistent results due to random initial weights, the requirement
of obscure initialization values (e.g., learning rate and hidden
layer size: the “black box,” phenomenon in which the user
feeds in data and receives answers, and no access to the exact

decision making process), slow training time of the network,
and heavy computational demand to train the network for
large datasets [177]. For a detailed analysis of advantages
and disadvantages of neural networks for remote sensing ap-
plications, the readers are referred to Jarvis and Stuart [70] and
Mas and Flores [109]. We can conclude from the literature
that although the neural network method has several unique
capabilities, it will become a useful tool in remote sensing
only if it is made faster, more predictable, and easier to
implement.

3.2.9 Decision Trees and Random Forest Classifiers

A Decision Tree is a tree-structure like flowchart ([52];
Fig. 6). There are many different types of decision tree algo-
rithms, e.g., Classification and Regression Tree Algorithm
(CART; [37]), C4.5 [113].

Decision Trees are easy to interpret, their internal workings
are capable of being observed, making it possible to reproduce
work, while making no statistical assumptions regarding the
distribution of data (Hass and Bun 2014). They are also com-
putationally efficient [52], and perform well on large multi-
spectral datasets [186].

One of the major problems with using decision trees is
overfitting, especially when a tree is particularly deep [52,
131]. Over-fitting occurs when the tree is designed so as to
perfectly fit all samples in the training data set, resulting in
branches with strict rules of sparse data. This affects the accu-
racy when predicting samples that are not part of the training
set (i.e., yields highly accurate output for the training data but
low accuracy for test data).

Random forest (RF) classifiers mitigate this problem well.
First proposed by Breiman [18], a RF is simply a collection of
decision trees whose results are aggregated into one final re-
sult. Their ability to limit over-fitting without substantially
increasing error due to bias makes them a powerful model.
In a random forest, the number of trees in the forest (n esti-
mators), and the maximum number of features to be used in
each tree can be specified. However, one cannot control the
randomness over which feature is part of which tree in the

Fig. 5 A typical representation of earth features between correlations of the three transformed bands
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forest, and there is no control on which data point is part of
which tree. Accuracy keeps increasing as the number of trees
is increased but becomes constant at a certain point.

RFs can handle both high dimensional data and use a large
number of trees where the key issue is correlation reduction
between the random classification variables (ability to handle
thousands of input variables without variable deletion) and
they can be run efficiently on large databases. The RF algo-
rithm can also detect outliers, which can be very useful when
some of the cases may be mislabeled.

Random forests have been extensively applied to deltaic
image classification and has resulted in improved classifica-
tion accuracy compared to traditional methods, such as max-
imum likelihood (ML) and artificial neural network (ANN)
methods [2, 5]. RFs outperform single decision tree algo-
rithms [57, 75]. With this combination of efficiency and ac-
curacy, along with very useful analytical tools, the RF classi-
fier is considered very desirable for multisource classification
of remote sensing and geographic data. That said, RFs are not
immune to caveats; they can be time-consuming, difficult to
construct and require greater computational resources in com-
parison to decision trees. In addition, since RFs deal with a
number of decision trees, and the randomness of features with-
in decision trees is uncontrollable, there is no way for the user
to have a qualitative understanding of the behavior of the
dataset to have an educated guess of the outputs, and there-
fore, has to take the output decision of the algorithm at face
value.

3.2.10 Bayesian Networks

Bayesian networks (BNs), also known as belief networks (or
Bayes nets for short), are directed acyclic graphs (DAGs)

belonging to the family of graphical models [71]. These
graphical structures include nodes representing the various
quantities, variables, or parameters that serve as input infor-
mation, and edges between the nodes (the arrows connecting
the nodes) representing probabilistic dependencies among the
corresponding random variables. A node that is not connected
shows a variable that is independent by other variables repre-
sented by nodes in the graph. In comparison to others, this is a
relatively new method in deltaic-feature identification using
remotely sensed imagery. Remotely sensed imagery can be
used as input information (in contrast to the conventional field
collected/modeled databases), and the conditional dependen-
cies in the graph are often estimated by using known statistical
and computational methods. The structure of a DAG in rela-
tion to evolution of a delta shoreline is illustrated in Fig. 7.

In Fig. 7, the nodes represent random variables and are
drawn as boxes labeled by the variable names. The edges
represent direct dependence among the variables and are
drawn by arrows between nodes. In particular, an edge from
node “Mean T ida l Range” t o node “ [De l t a i c ]
Geomorphology” represents a statistical dependence between
the corresponding variables. Thus, the arrow indicates that a
value given to variable “Geomorphology” depends on the
value of variable “Mean Tidal Range.” Given the conditional
dependencies, BNs can be effectively used to represent
knowledge about an uncertain domain (e.g., “Deltaic evolu-
tion”) and algorithms can be created that allow for learning
and inference through the use of a Bayesian network.

Often ANNs are compared to BNs due to their similarities
in using directed graphs methods and are both used as classi-
fier algorithms in problem solving. However, unlike ANNs,
the BN structure itself provides valuable information about
conditional dependence between the variables. It is a visual

Fig. 6 A decision tree to characterize different coastal features and isolate the shoreline
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representation of graph where its vertices and edges have
meaning in comparison the ANNs where the network struc-
ture does not offer direct interpretations between nodes and
can be difficult to interpret. Not many studies are found in
literature which use BNs exclusively for deltaic feature detec-
tion (Table 2), primarily due to the large amount of supple-
mentary data needed to setup such networks.

3.2.11 Support Vector Machines

A support vector machine (SVM) is a machine-learning tech-
nique that is useful for multispectral and hyperspectral remote-
ly sensed classifications in which spectral separability be-
tween coastal land and water is difficult to ascertain due to
lack of clear zonation between vegetation species, and mixed
pixel effects. SVM differs from traditional classification ap-
proaches by identifying the boundary between classes in n-
dimensional spectral-space rather than assigning points to a
class based on mean values of class clusters [66].

SVM creates a hyperplane through n-dimensional spectral-
space that separates classes based on a user defined kernel
function and parameters that are optimized using machine-
learning (Fig. 8). In other words, given labeled training data,
the algorithm outputs an optimal hyperplane which catego-
rizes new feature classes (Fig. 8). In two-dimensional space,
this hyperplane is a line dividing a plane in two parts where
each class lays either side of the hyperplane. By identifying
the hyperplane that separates two classes rather than using the
distance between class spectral means, SVM can produce a
more accurate classification.

Several studies have demonstrated the great potential of
SVM. Pal and Mather [132] found that SVM outperforms
maximum likelihood and artificial neural network using
Landsat TM and is well suited for small training sets and
high-dimensional data. Foody and Mathur [49] found SVM

outperforms discriminate analysis and decision-tree algo-
rithms for airborne sensor data. Li et al. [89] applied SVM
to an object-based image analysis (OBIA) with better results
than standard fuzzy logic classification. Elhag et al. [42] used
Landsat TM and ETM+ imagery to map landcover in the Nile
River Delta using SVM and supervised classification ap-
proaches and showed that SVM showed higher classification
accuracies. Thanh Noi and Kappas [162] concluded that the
SVM classifier on average outperformed the Random forest
and kNN (K-nearest neighbor (unsupervised)) classifiers.
Given the success in the literature (see examples in Table 2),
we can conclude that SVM is the best individual classification
technique for morphology change detection among pixel-
based classification techniques.

3.2.12 Object-Based Image Analysis

Traditional pixel-based image classification assigns a land
cover class per pixel. All pixels are the same size, same shape,
and do not have any implicit connectivity with of their neigh-
boring cells. OBIA, on the other hand, segments an image by
grouping small pixels together into vector objects. The OBIA
is a two-step process: segmentation and classification.
Segmentation breaks up the image into objects representing
land-based features. These segmented objects become the unit
of analysis, from which spectral statistics, such as spectral
band means and standard deviation, or spatial information,
such as image texture, can be used in the second process;
image classification. In image classification, according to the
spectral, temporal and spatial response of land cover types in
the objects, the corresponding bands and band combinations
are selected, and their sensitivity is trained.

Object-based image analysis is conceptually simple and
generic across sensors [16]. The key benefits of OBIA relative
to pixel-based methods include (1) the possibility to

Fig. 7 Bayesian Network to
detect deltaic evolution. Black
arrows indicate causal
relationships linking the forcing
factors and the response variable
(deltaic evolution)
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incorporate user-defined scale, shape, and compactness pa-
rameters useful for creating objects with heterogeneous pixels
(in the process of creating objects, scale determines the occur-
rence or absence of an object class, and the size of an object
affects a classification result), in addition to spectral values of
the input image layers [16]; (2) smoothing some of the local
variation within objects, which may reduce the salt-and-
pepper noise and enhance classification accuracy [72, 76];
and (3) accounting for the landscape hierarchy of patch, cover
type, and ecosystem structure by working with multiple object
layers nested within each other at different spatial scales [78].
The approximation of ground entities and patches by image
objects makes themmore ecologically relevant and potentially
more resilient to minor geospatial positioning and image reg-
istration error than pixel units [184].

Drawbacks include spectral similarity of diverse classes
due to homogenizing effects of moisture or dead vegetation
signals, and dilution of fine morphological features which
may reduce classification accuracy and the effectiveness of
class discrimination [72, 184].

3.3 Sub-Pixel-Based Methods

Most classification approaches, as discussed above, are based
on per-pixel information, in which each pixel is classified into
one category and the land-cover classes are mutually exclu-
sive. However, in the highly turbid coastal zone, waters are
mixed with various materials including suspended particles,
sediments, and phytoplankton, and can often be classified as
“land” in many conventional algorithms. In addition, classifi-
cation accuracies decrease when there is more than one land
cover type within a given pixel (Fig. 9), making it a challeng-
ing task to correctly classify new land growth and shorefront
with shoal waters.

A relatively young field in image analysis, and one that has
gained traction over the past decade or so, sub-pixel represen-
tations, provides the opportunity to extract information about
the fraction of different classes within a mixed pixel (soft
classification). Soft classification approaches in general were

shown to result in improved cartographic representations of
transitional zones and heterogeneous landscapes [54, 171,
188]. There are three main types of soft classification ap-
proaches used in delta morphology studies currently: fuzzy
logic, spectral mixture analysis, and sub-pixel analysis.

3.3.1 Fuzzy Logic

A fuzzy classification technique is a probability-based classi-
fication rather than a hard classification. It was shown to be an
extremely useful classification technique in deltaic regions
where the identification of the shoreline is challenging due
to the shallowness and turbidity of water, vegetative gradients,
and dynamically changing waterline [191]. A fuzzy classifi-
cation allows a pixel to have multiple and partial class mem-
berships to accommodate the effects of mixed pixels. The
conventional output of a fuzzy classification is a set of fraction
images which indicate the relative coverage of the classes in
the area represented by the pixel. If these predicted class
covers could be located geographically within the area repre-
sented by the pixel, it would allow the boundary between
classes to be plotted at a sub-pixel scale.

Fuzzy classification has advantages over conventional
methods and improves drastically on the classification accu-
racies by fuzzy partitioning as the spectral space and retaining
information otherwise would have been lost due to conven-
tional partitioning and classifier training. Ghanavati et al. [55]
showed a better performance of fuzzy classification over max-
imum likelihood classification and also showed better dis-
crimination of mixed and unmixed land use/land cover cate-
gories. It is also more feasible in integrating remotely sensed
data and ancillary data [148, 189] such as digital elevation
models, channel networks and climate data (Lu and Weng
2007). However, fuzzy classifications can be very slow with
long run-times during feature classifications when higher ac-
curacies are sought after. This is because additional fuzzy
rules have to be incorporated into the system, and algorithms
need to be tweaked (since they do not use training data) to
solve for complex deltaic environments.

Fig. 8 An illustration of the SVM concept
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3.3.2 Spectral Mixture Analysis

Spectral mixture analysis (SMA) enables the extraction of
information about the surface materials present in a pixel.
This is done by calculating the least-squares best fit for each
pixel along mixing lines bounded by spectra of end-members
and in this way accounts for each pixel’s variation in the
mixture composition [130]. An end-member ideally repre-
sents a pure component of the mixtures present in the pixels.

The output of SMA is typically presented in the form of
fraction images, with one image for each end-member spec-
trum, representing the area proportions of the end-members
within the pixel. End-member selection is one of the most
important aspects in SMA, and much previous research has
explored selection/identification approaches [120, 153, 163].

Previous research has demonstrated that SMA is helpful for
improving classification accuracy [101, 151] and is especially
important for improving area estimation of land-cover classes
based on coarse spatial resolution data. Albeit its increased
accuracy over other methods, SMA suffers from two major
caveats of (1) not having potential end-members occurring in
patches larger than the image resolution; there could exist
earth features in smaller patches smaller than pixel dimen-
sions. This makes the identification of an end-member for
classification impossible and consequently be classified erro-
neously. (2) End-members not being truly constant within an
image; there always exist a range of reflectance values for a
particular end-member class that could result in overlap be-
tween different end-member classes. This could create a mis-
match between the defined end-member and ground truth and
yield misclassification results.

3.3.3 Sub-Pixel Analysis

Sub-pixel processing is defined as the search for specific ma-
terials of interest from within a pixel’s mixed multispectral

image digital number spectrum. This method has advan-
tages over SMA and fuzzy classifications, because the
overall composition of each pixel is not limited to a com-
bination of already defined image classes (end-members).
The steps in sub-pixel processing include signature deri-
vation for a material of interest and classification of each
pixel identifying the fraction of material of interest pres-
ent. Therefore, for each material, a separate classification
must be done. The fraction image pixel values vary from
0.0 to 1.0 [130]. This specific technique of sub-pixel anal-
ysis in deltaic environments was the least used technique
in the reviewed literature.

3.3.4 General Concerns about Techniques Used in Two-Step
Change Detection

The 15 techniques used in Two-Step Change Detection for
delta morphology analysis described above, although com-
monly used, share some inherent limitations. One limitation
is that since separate classifications are carried out on two
different satellite images before detecting the deltaic change,
the accuracy of the change map typically will be at best the
multiplication of the accuracies of each individual classifica-
tion for each date [145]. This is a concerning problem as this
error can be significant at times, especially whenmultiple time
steps are compared. Also, when the analyses include utiliza-
tion of imagery from longer archives (i.e., use of different
satellites even in the same constellation; e.g., Landsat MSS,
TM etc.), it is inevitable that different data extraction and
classification algorithms needed to be used to infer deltaic
features (due to the variability of spectral resolution of bands).
This process, in addition to the caveat mentioned above,
carries the distinct disadvantage of having uncertainties occur-
ring due to differing classification/extraction algorithms.
Thus, the two-step detection will incur an additional step of
quantifying of uncertainties.

Fig. 9 The case of the “mixed pixel”
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Furthermore, two-step change detection, since it requires
the production of at least two different maps, can be opera-
tionally complex and computationally intensive (especially on
high-resolution multispectral imagery covering large areas).
Therefore, the use of said methods to produce time series of
change-maps can be difficult and expensive. Multi-temporal
image comparison techniques/one-step change detection tech-
niques (discussed below) were, in part, developed to alleviate
these limitations.

3.4 Classification Techniques Used in One-Step
Change Detection

3.4.1 Image Differencing/Layer Arithmetic

In this technique, spatially registered images from different
times are subtracted, pixel by pixel, to produce a layer which
represents the change between the two. This procedure yields
a difference distribution for each band (i.e., a histogram). In
such a distribution, pixels of small radiance change are dis-
tributed around the mean, while pixels of large radiance
change are distributed in the tails of the distribution [108]. A
critical element of the image differencing method is deciding
where to place the threshold boundaries between change and
no-change pixels displayed in this distribution.

Although image differencing is a widely used technique for
change detection and has been used in river deltas of different
geographical environments (Table 2), interpreting the differ-
ence image can be difficult because different input values can
have similar output results after subtraction (e.g., input pixel
values of 190 and 150 can have the same result of 40, as inputs
of 100 and 60, after subtraction), and also since the original
pixel value information is not retained for further investiga-
tions [26]. The mathematics of typical image differencing is
shown in Fig. 10 below.

3.4.2 Change Vector Analysis

Change vector analysis (CVA) is an enhanced version of band
differencing. It detects changes above a selected threshold
value to generate a binary image of change and no-change
pixels [152]. A change vector can be described as an angle
(vector direction) and a magnitude of change between two
different time instances from multi-spectral satellite data
[25]. A decision on change is made based on whether the
change magnitude exceeds a specific threshold. Once a pixel
is identified as changed, the direction can be examined further
to determine the type of change. The type of change is often
identified using the angle of the vector in two spectral dimen-
sions [21]. Although initially developed for only two spectral
bands, modifications to CVA enable its use to any number of
spectral bands [11].

In addition to providing the direction of change, which is
unparalleled to other techniques discussed, CVA also has the
capability of avoiding cumulative error in image classification
of an individual date and processing any number of spectral
bands simultaneously to retrieve maximum “from-to” type
information. However, like other radiometric change ap-
proaches, CVA also has several drawbacks that limit its use.
These include a strict requirement for reliable image radiom-
etry. CVA is based on pixel-wise radiometric comparison and
so the accuracy of image radiometric correction (for alleviat-
ing the impacts caused by disturbing factors such as different
atmospheric conditions, solar angle, soil moisture and vegeta-
tion phenology, etc.) is more critical for CVA than for spectral
classification approaches. Another drawback is a lack of au-
tomatic or semiautomatic methods to effectively determine the
threshold of change magnitude between change and no-
change pixels [21].

3.5 Ensemble Classifications

Different image classification methods, such as parametric
classifiers (e.g., maximum likelihood) and non-parametric
classifiers (e.g., neural networks, decision trees), have their
own strengths and limitations [164]. For example, when suf-
ficient training samples are available and the features in a
dataset are normally distributed (distribution in space; among
pixels), a maximum likelihood classifier (MLC) may yield an
accurate classification result. In contrast, when image data are
anomalously distributed, neural network and decision tree
classifiers may demonstrate a better classification result [102].

Ensemble (hybrid) classification methods combine the
strengths of multiple classification approaches. They can be
valuable for river delta studies because of how they effectively
address the complex variability in spectral responses of shore-
line environments. Ensemble classifications can be classified
into two approaches: (1) classifying a single image of a par-
ticular time step and then comparing it with an image of a
different time step (classified using the same techniques or
otherwise), or (2) directly comparing between two
timestamps. The direct comparison between time steps is of-
ten expressed as a layer arithmetic operation to identify
changed elements (locating change through, e.g., CVA),
followed by a supervised or unsupervised direct classification
of the changed features [102]. Previous research has indicated
that the integration of two or more classifiers provides im-
proved classification accuracy compared to the use of a single
classifier [67, 75, 154, 170]. In an effort to not duplicate stud-
ies and maintain the succinctness of the document, the read-
ership is reverted to sections discussed above (3.1.1–3.1.15;
3.2.1 and 3.2.2) where instances of ensemble classifications
can also be found. A note of caution when applying ensemble
classifications is that the uncertainties occurring from different
techniques have to be quantified and factored into accuracy
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calculations of feature extractions, as they can be significant
depending on the methods used and the number of time steps
of satellite imagery processed.

As evident from the discussion in Sections 3.1–3.3, sub-
pixel-based classifications tend to yield better results than
pixel-based classifications. However, sub-pixel-based
methods can be computationally expensive, and algorithm
development can be time consuming. Thus, the choice of a
sub-pixel-based algorithm is a trade-off between how com-
plex the deltaic environment is, how big the river delta is
(i.e., is the value of a pixel significant in comparison to the
size of the delta?), and what is the time span of the delta
change analysis (aremultiple image time steps involvedwhich
could compound uncertainties). In addition, since there is also
the problem of compounding error resulting from classifica-
tion techniques of different time steps, development of algo-
rithms to detect sub-pixel heterogeneity can be worthwhile if a
one-step change detection method, even pixel-based (e.g., im-
age differencing. CVA), can achieve comparable results as
sub-pixel algorithms.

4 Other Delta Morphology Change Indicators

Section 3 of the manuscript focused on one delta morphology
change indicator: the shoreline. The discussion of all other
environmental indicators in one section is due to that fact that
the number of studies pertaining to every other environmental
indicator was markedly less than those for deltaic shoreline
change studies. We attribute this to two reasons (1) research
interest: more attention is given to how deltaic landmass avail-
able for humans evolves over time (governed by the shore-
line), and (2) methodological challenges: difficulty for

classification algorithms to distinguish between spectral char-
acteristics of these specific deltaic features and the surround-
ing terrain features. The shoreline, on the other hand, even
with its own complexities at the land-sea margin, is relatively
easier to detect, as changes in spectral characteristic between
land and sea are comparatively prominent. Possible pathways
to address these less-researched environmental indicators are
discussed as future directions in Section 5. The following sub-
sections will discuss studies with regard to other deltaic mor-
phology change indicators. The importance and role of these
indicators in delta morphology change detection is summa-
rized in Table 1.

4.1 Meander Belts

Lateral migration as a response to variations in river flow and
sediment discharges is associated with erosion of the stream
bed or channel bank and can cause many geomorphological
and river management problems on a delta [83]. Mathers and
Zalasiewicz [112] used a combination of filtration and con-
trast stretching on Landsat TM imagery to map and classify
Meander Belts of the Red River in the Red River Delta in
Vietnam. Yang [180] and Yang et al. [181] used Manual
Digitization and Band Ratioing/Manual digitization on
Landsat MSS and TM imagery to identify channel shifting
change (channel migrations), channel geometric change
(channel length and width), and channel pattern change
(braiding, straight, slight meandering) of the Yellow River in
the Yellow River Delta. Seker et al. [144] studied meander
migrations of the Filyos River in and upstream of the Filyos
delta, Turkey (Fig. 11) and Ghanavati et al. (2007) used topo-
graphic maps and Landsat TM and ETM+ imagery to detect
channel migrations in the Hendijan River delta, Iran.

Fig. 10 Image differencing workflow between typical rasters. The values are arbitrary values used for illustration purposes
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4.2 Crevasse Splays, Channel Avulsions, and
Distributary Networks

A crevasse splay is a deposit of sediment in the shape of a fan
or lobe formed by river channels (crevasse channels) as a
result of point failures of a levee induced by a trigger event
such as a major flood (adapted from [73, 114]). Many channel
avulsions in deltaic areas start with the formation of a crevasse
splay [155]. The development, evolution, and finally stabili-
zation of splays leads to the formation of avulsions, and
progradation of avulsion deposits into the flood basin. Such
avulsions and other channels on the delta make up the distrib-
utary network.

Syvitski et al. [160] used SRTM (Shuttle Radar
Topography Mission) interferometric synthetic aperture radar
(InSAR) data to study zones of nodal avulsions in 33 lowland
floodplains (inclusive of deltas). Li et al. [90] used Landsat
MSS and TM imagery, and Li and Bristow [91] used
QuickBird-2 and WorldView-2 imagery to monitor flood-
induced river morphology changes and to study splay devel-
opment morphology respectively in the Río Colorado river
delta in Salar de Uyuni, Bolivia (Fig. 12). Mathers and
Zalasiewicz [112] used Landsat TM with the integration of
geological data to study tidal creeks, channels, anastomosing
rivers in the Red River Delta, Vietnam. Isikdogan et al. [69]
proposed an algorithm to automatically extract the channel
networks from satellite imagery where water and non-water
pixels have the greatest spectral contrast, and in an innovative
use of high-resolution Google earth imagery, Gugliotta et al.
(2019) obtained channel network widths and sinuosity of five
deltas (Fly, Yangtze, GBM, Irrawaddy, and Mekong).

Studies of splays, avulsions, and channel networks is par-
ticularly challenging in coastal deltas due to low topographic

gradients, the presence of features such as sediment plumes,
and the wide range of scales over which channel features are
present. Channel networks identified in most of the studies
were as good as the moderate resolution of the satellite imag-
ery used. In addition, robust channel extraction methods
would ease monitoring coastal areas and analyzing deltaic
response to anthropogenic and natural forcing over large spa-
tial areas and long temporal intervals. The role of higher res-
olution satellite imagery in better identifying these deltaic fea-
tures and the need for more robust deltaic feature extraction
methods based on these better platforms is discussed in
Section 7.

4.3 Barrier Islands, Beach Spits, and Mouth Bars

There are several deltaic features that result from the dynamic
interaction of fluvial sediment supply and the redistribution of
sediment by marine processes at the river mouth-sea interface.
Barrier islands are shore-parallel elongated accumulations of
the out-flowing effluents of the feeder river, formedmainly by
the wave action at the river mouth, and build vertically by the
accumulation of sand fromwind transport [166]. A Beach Spit
also stems from an identical formation principle except that it
is a stretch of sorted and reworked sediment deposited by the
waves which has a connection to the mainland at one end,
unlike barrier islands. A mouth bar is different in that it is
created typically in the middle of the main feeder river of the
delta. As the flow diverges near the ocean, sediment settles out
in the channel and creates an incipient mouth bar. As flow is
routed around the incipient bar, additional sediment is depos-
ited on the incipient bar. This continued process results in the
formation of a full-fledged mouth bar, which causes the chan-
nel to bifurcate. There can be hundreds of mouth bars in a

Fig. 11 The meandering of the
Filyos River through time
observed using satellite imagery.
Source: Seker et al. [144]
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large feeder river (e.g., Ganges-Brahmaputra-Meghna River
System).

Frihy et al. [53] used Landsat satellite data to assess the
evolution of the coastal spit and changes in the lagoon
margin and contiguous barrier islands in the Damietta
Promontary of the Nile River Delta. Nandi et al. [121]
used Tasseled Cap Transformation on Landsat MSS,
TM, ETM+ while Gopinath and Seralathan [59] used im-
age differencing on satellite data of the Indian Remote
Sensing Satellite-IC to monitor changes of Sagar Island,
the largest mouth bar of the Ganga-Brahmaputra-Meghna
(GBM) delta. Demers et al. [35] used RADARSAT-2 C–
band and optical satellite data to map the shoreline of
islands of the outer Mackenzie Delta using object-based
image analysis. A common problematic are highlighted in
these studies was detecting these morphological features
using medium to coarse resolution imagery. Better pixel
resolutions in comparison to the scale of deltaic features
(Fig. 13) were shown to be an area of improvement for
better feature detection. In addition, the detections were
heavily impaired by the sediment plume in the delta near-
shore environment. The necessity of data mining and sub-
pixel analyses was apparent. We discuss these shortcom-
ings and possible pathways forward in detail in Section 7;
Future Directions.

5 Synthesis and Applications

5.1 Machine Learning

One of the major insights stemming from this literature review
is that sub-pixel-based methods tend to yield the highest ac-
curacies among all the discussed methods in morphology
change detection, while machine learning (ML) techniques
perform relatively better (contingent upon good training data,
and knowledge and skill of the algorithm developer) than
conventional pixel-based techniques (band ratioing, density
slicing). The former is a straightforward conclusion given that
sub-pixel-based methods inspect details within the constraints
of a pixel to elucidate information about the land surface
which is otherwise impossible through pixel-based methods;
higher level of inspection within a pixel will yield greater
amounts of detail.

Perhaps more interesting is the insight that ML techniques
(e.g., ANNs, Bayesian networks etc.) perform better than con-
ventional methods, given that they both work at a pixel-level.
It is also found that using a combination of ML techniques
with others (another ML technique or other conventional
ones) was shown to yield very high accuracy and utility in
morphological feature classification. Thus, it is worthwhile
examining why ML techniques perform well in deltaic

Fig. 12 Crevasse splay-led avulsion in the Salar de Uyuni, Bolivia. A1
and B1: The same region observed from Quickbird (A1) andWorldview-
2 (B1) satellites at two different times; A2 and B2: Line drawings, main
river channel is demarcated by the thick black line. A2: yellow splays

represent Inactive Crevasse Splays; red splay demarcates the site where
avulsion occurs. B2: green splays represent new crevasse splays. Dashed
line indicates river channel before avulsion. The arrow shows the channel
shift after avulsion. Source: Li and Bristow [91]
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environments, so we could better understand and harness their
strengths to develop data mining algorithms in under-studied
deltaic regions of the world.

The reasons for the success of ML techniques in case stud-
ies in the studied literature lie in the complexity of the deltaic
system itself. One of the fundamental characteristics of a com-
plex system is that classification results are non-linear stem-
ming from the heterogeneity in the system (a spectral reflec-
tance of x denoting water at one location, might be a mixture
of mud, water, and vegetation debris, at another). A conven-
tional algorithm is designed to classify the system using a
simple succession of steps subject to simple conditions. ML
algorithms, on the other hand, have the ability to identify
complex relationships through the testing of a very large num-
ber of possibilities. Typically, the algorithm runs multiple ex-
periments of classification on the primary image data before
arriving at a final decision output. The outcome of the second
experiment will not be the same as the first, and the final result
is thus an ensemble of the two. ML algorithms work on the
principle that it generally approximates the truth instead of
aiming to find it exactly, in comparison to conventional
methods, which in a complex domain such as a delta, can lead
to lowered accuracies due to misclassification. The approxi-
mation of the truth of ML techniques, thus, also provide a
measure of uncertainty, and can act as platforms for other
types of research to build up on, which can later-on be

incorporated into the decision-making process. Secondly, in
a ML algorithm, many other factors related to morphology
change are considered before assigning a label to a particular
image pixel (e.g., see Fig. 7 of how a Bayesian network solves
for a deltaic evolution). This provides ancillary data (remotely
sensed or not) of the deltaic environment, which improves the
classification accuracy of the algorithm.

We understand that not every researcher engaged in remote
sensing possesses the skills of developing complex ML algo-
rithms. Therefore, we would also like to make a point that
although ML algorithms are favorable, a combination of con-
ventional methods in an ensemble could also lead to good
classification accuracies.

What type of algorithm should one use for delta morphol-
ogy detection? Is it worth the effort of going the entire distance
of developing highly accurate, complex ML algorithms when,
comparable results can be achieved through already existing
conventional remote sensing techniques? The answer to these
questions, in our opinion, depends on several factors. The
most important is the study domain of interest. For example,
the Damietta and Rosetta Promontaries of the Nile River
Delta, Egypt (which are made of the Damietta and Rosetta
branches of the Nile River, respectively) are cuspate shaped,
with straight forward land-sea margins (Fig. 14a). Due to the
clear difference in spectral signatures, the deltaic land can be
clearly distinguishable from the ocean. On the contrary, the

Fig. 13 a The shoreline position change through time (1973 and 2007)
between Damietta and Port-Said of the Nile River Delta. A prominent
beach spit is visible between locations A and B. Source: El-Asmar and
Hereher [41]. b Location of The Sagar Island, the largest barrier Island in

the Ganges-Brahmaputra-Meghna Delta. Ground control points were col-
lected at each sampling station to calibrate satellite data. Source: Gopinath
and Seralathan [59]
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Ganges-Brahmaputra-Meghna (GBM) delta in India/
Bangladesh has intricate coastal features on the land-sea mar-
gin (Fig. 14b). The extensive anastomosis of channels, huge
volume of sediment output, complex vegetation gradient,
presence of barrier islands, mouth bars, and lagoons at the
land-sea interface complicates the detection of morphological
features.

Therefore, it would be prudent to use a combination of
conventional techniques to monitor the Nile, in order to utilize
available resources (time, user-skills) effectively rather than
going the extra step of deep algorithm development, which
might be very well the case for the GBM delta. It is therefore
of utmost importance to have an understanding of the com-
plexity of the study domains prior to the development of re-
search methodology. It is also important to be informed of
how much validation data is needed to train these algorithms
(data intensive nature of algorithm) and the run-time (compu-
tational cost). For example, a Bayesian network might be sig-
nificantly better than a simple band ratio, but is it worth the
trade-off of time that one would invest to develop the algo-
rithm and the amount of ancillary data (which might need to
be purchased and pre-conditioned) that is required to arrive at
a relatively uncomplicated feature extraction?

5.2 Radar Imagery

Literature about the use of radar imagery for deltaic morpho-
logical feature detection was minimal compared to optical
platforms. This is likely due to a combination of factors. The
first is the premium access that was needed for almost all radar
archives until very recently. Research proposals on intended
projects had to be submitted to data providing agencies, and
on most occasions, imagery had to be purchased. Secondly,
unlike the lengthy activation periods of optical platforms (e.g.,
Landsat, since 1972), the discontinuation of radar platforms
within a short period of time has led to short archival length of

radar imagery which consequently resulted in difficulty in
monitoring deltaic changes over time. Thirdly, skilled photo-
grammetric operators are needed to process and analyze radar
imagery, and these skills are not ubiquitous. Fourthly, and
most importantly is the utility in distinguishing on-land deltaic
features such as crevasse splays and avulsions, especially in
complex deltaic regions. Although radar imagery is well uti-
lized in shoreline delineation (see examples in Table 2), there
is no conclusive evidence that suggests that radar imagery
performs well in comparison to optical imagery in recognizing
on-land deltaic features. Thus, given the choice between opti-
cal and radar platforms, the rational selection seemed to be
optical imagery over the years in most cases. However, with
open accessibility policies to radar archives through the
Copernicus Program of the European Union, Alaska
Satellite Facility and the Japan Aerospace Exploration
Agency (JAXA), and training programs/Webinars offered by
NASA, European Space Agency and other private institu-
tions, opportunities in relation to feature detection are expect-
ed to open into the future.

6 Intercomparison of Delta Morphology
Feature Extraction Techniques

One of the more important insights that we draw from the
summation of studies is that the review of literature revealed
no clear clustering of a particular set of technique(s) that could
be used for feature extraction for a particular type of delta
(e.g., river-dominated vs. tide-dominated). One or two given
techniques which were used to extract a particular morpholog-
ical feature (e.g., shoreline) of a particular type of delta (e.g.,
river-dominated delta) was not necessarily ideal for a river
dominated delta elsewhere on the earth. This is understand-
able as deltaic morphology dynamics are driven by many
other location/climate related factors (e.g., inherent variability

Fig. 14 The comparisons of shorelines between the a Damietta Promontary of the Nile River Delta and the b Ganges-Brahmaputra-Meghna Delta
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in rainfall, soil minerals, growing cycle phases of vegetation)
that make the identification of morphological features even
using the same technique complex. We noted that there were
not enough comparison studies which (1) compared multiple
techniques at a given case study, nor (2) comparisons of even
one or two techniques across multiple case studies in different
geographical regions of the world. The notion of which tech-
nique(s) would be the most appropriate for a given deltaic
region would be immensely important for potential future re-
search as these could be used to infer on how to fine tune
algorithms to compensate for environmental noise, and sub-
sequently accurately detect deltaic landmass evolution over
time. This will help us infer why particular techniques
underperform in differentiating earth features in different geo-
graphic regions of the world, enabling deeper investigation
into some of the inherent problems of particular techniques
and provide a platform for their improvement. In addressing
this niche, we evaluated seven techniques on ten different
river deltas (Amazon, Chao Phraya, Burdekin, Brahmani,
Po, Danube, Ebro, Han, Irrawaddy, Colorado) globally, be-
longing to different river delta types (i.e., river-dominated,
tide-dominated, wave-dominated) and representing the differ-
ent Köppen climate classes.

Five conventional and two ML methods were compared.
The conventional methods are (1) Modified Normalized
Difference Water Index (MNDWI), (2) Normalized
Difference Water Index (NDWI), (3) PCA analysis, (4)
unsupervised classification, and (5) supervised classifica-
tion. The ML techniques used are (6) random forest clas-
sifier and (7) support vector machine. These seven tech-
niques were selected as they were the most used as per our
review. All were compared against hand-digitized vectors
(used as a reference baseline) of Landsat-OLI 2018 imag-
ery for the 10 case study deltas (the number of case studies
were constrained by the availability of sufficient training
data for ML techniques). The accuracy of different indica-
tors of morphology (shoreline, beach spits, mouth bars,
etc.) were evaluated against the hand-digitizations based
on two parameters: (a) the continuity of the technique-
derived vector to the reference baseline, and (b) proximity
of technique-derived vector to the reference baseline. A
new robustness index (R) was developed which joins both
metrices:

R ¼ LE*100=LR
DEA

ð1Þ

where LE is the length of the extracted shoreline, LR is the
length of the real shoreline, and DEA is the averaged per-
pendicular distance between the extracted and real shore-
line. The R index value increases as the shoreline extracted
by a given method is closer to the real shoreline in length,
whereas robustness decreases as the extracted shoreline is

farther away from the real shoreline. Best and worst
performing techniques of each delta are summarized in
Fig. 15 below.

Analyses show that, except for two cases (the Po and
Irrawaddy Deltas), unsupervised and supervised classifica-
tions performed the best across all morphology indicators
(e.g., beach spits, tombolos, shoreline) (Fig. 16). For the Po
and Irrawaddy Deltas, the support vector machine algorithm
performed the best. PCA ranked the lowest among the tech-
niques for all the deltas, and we attribute these low PCA scores
to the non-capture of boundary line land-sea pixels as ‘noise’,
from the first few principal components during the transfor-
mation process.

However, when the performance of all the techniques were
summarized (Table 1) and analyzed for robustness, we find
that unsupervised classification yielded the best performance
on average. A nonparametric ANOVA showed that when all
river deltas were considered, robustness (R) values of unsu-
pervised classifications were significantly outperforming all
the other techniques. SVM, Supervised Classifications, and
Random Forest Classifications did not show a significant dif-
ference (α = 0.05) between each other. The two ratioing tech-
niques’ performance also did not have a significant difference
between each other (P = 0.79; α = 0.05). All other techniques
had significant differences with PCA (Table 1).

We did not observe clustering of techniques around delta
types, nor between deltas in specific Köppen climate classes.
However, it must be noted that these are only a small sample
of deltas from each delta type and Köppen category. It was
interesting to note how although past literature showed that
support vector machines (SVMs) as the best among pixel-
based classifications, our comparisons yield mixed outcomes
(SVM performing best in only 2 cases out of the 10, and
second ranked in all other cases). We attribute this to two
reasons: (1) classification algorithm accuracies depend vastly
on the resolution of the satellites, and (2) the training data that
we used for the SVMs were derived from other satellite prod-
ucts (of higher resolutions than Landsat). The literature review
reflects a variety of resolutions and sources as opposed to our
use of 30 m Landsat imagery for all the case studies. On the
other hand, some studies used in-situ field measurements as
training data which likely led to higher classification accuracy.
However, given the almost similar accuracies of unsupervised
classification and SVM, we recommend the prior (because
SVMs require good training data and takes time for algorithm
development) for deltaic feature detection based on Landsat
imagery (Table 3).

In a synergistic study, Munasinghe et al. (under review)
evaluated five conventional remote sensing techniques (the
same as used in this study) on 44 global river deltas worldwide
in an attempt to infer on the performance of techniques in
shoreline extraction in different types of deltas (River, Tide,
Wave-dominated) in different geographic/climatic regions. A
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major goal of that study was to draw common generalizations
and working behaviors of techniques around well-known
types of deltas and apply them to lesser studied, data sparse
regions. Results showed that unsupervised classification
yielded the best performance for the majority of the deltas
(35 of 44) while supervised classification yielded the best
for the remainders (9 of 44). They also found that extraction
accuracies were higher in wave dominated deltas, lower for
tide-dominated deltas, and moderate for river-dominated
deltas. Reasons were attributed to the alongshore sediment
transport processes of the wave-dominated deltas, resulting
in sandy shorelines which has higher contrast with the less-
muddied ocean making it easier for land-water boundary iden-
tification. In comparison, sediment-rich murky waters in the
nearshore environment governed by the intertidal oscillations
in tide-dominated deltas provided less contrast with land.

Hence reduced extraction accuracies. Based on results of both
these studies, we recommend the use of unsupervised classi-
fication as a first order extraction technique for data sparse
deltas or previously unstudied deltaic regions.

7 Future Directions

Based on our evaluation of the literature, we see four areas
which we deem most opportune for future development:

Direction 1: Utilization of higher resolution imagery and
developing better sub-pixel data mining techniques

An important aspect that we recognized earlier was that,
compared to shoreline changes, there was a dearth in the
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Fig. 15 A summary of the best
and worst performing techniques
of the sample deltas

Fig. 16 Algorithm performance on delta morphology indicators. Left: the
detailed extraction of extensive channel networks of the Amazon river
subsequent to unsupervised classification.Right: A comparison of vectors

of shoreline and beach spit extractions between unsupervised (green) and
supervised (red) of the Ebro delta

Remote Sens Earth Syst Sci

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



number of studies that focused on other environmental indi-
cators of delta morphology change. This was explained by the
fact that the shoreline governs the effective landmass that is
suitable for human use and is prudent to know the
progradation and degradation of a delta against sea level rise
and fast changing climatic conditions. Consequently, shore-
line change studies, evidently, seem to have greater weightage
and research merit than other indicators. We, however, would
like to bring out a different perspective to the problem in
recognizing that technological limitation is also an important
governing factor of these disparate numbers: specifically, the
spatial resolutions of earth observing satellites that are used to
detect environmental indicators of river delta morphology
change.

Detecting the shoreline of a delta, although as described
earlier is quite complicated, can be performed relatively well
with imagery with moderate spatial resolution (in the range of
30–250 m). On the other hand, detecting crevasse splays,
channel avulsions and anastomosis of channels with a high
level of accuracy, especially in smaller channels and topo-
graphically challenging regions, require very high-resolution
satellite imagery (below 10 m). The problem is exacerbated if
these changes are required to be detected in particularly small
deltas, as the background noise from surrounding, non-deltaic,
features can heavily influence these analyses.

In the last decade, we experienced a great increase in the
availability of higher resolution satellite imagery, primarily
through commercial space programs (e.g., Planet Labs,
Airbus Defense and Space, Inc.). These sub-meter resolution
platforms could be instrumental in detecting intricate deltaic
features. Striving for higher resolutions, however, comes at a
cost. With an exception of programs that provide conditional
access to high-resolution satellite archives (e.g., Planet labs),
most of these platforms are payment-based, and imagery ac-
quisition could be a significant proponent of the project bud-
get. Costs also include data storage and purchase and mainte-
nance of high-powered computational systems. Due to exor-
bitant costs, and also due to limited archival length (sincemost
of these platforms are new, the length of their archives is not
sufficient for delta change studies), the usage of higher

resolution platforms is still limited in deltaic research.
However, it can be expected that, as time progresses, the use
of these platforms will increase dramatically.

In the meantime, fusion of high- and medium-resolution
imagery for detecting fine resolution deltaic features is one
promising way forward. Image fusion and the consequent
overall increase in resolution presents a solution to another
problem: presence of mixed pixels in shoreline classification.
As described earlier, this issue has been recognized as a major
problem influencing the accuracy of remote-sensing image
classification [95]. Theoretically, with improvements in imag-
ery spatial resolution, the number of mixed pixels will be
greatly decreased [175].

There is also great potential in developing novel data min-
ing algorithms, especially sub-pixel algorithms (which have
historically shown success in the literature) that can be used
with already existing moderate spatial resolution platforms.
Examples of such algorithms, which were recently applied
to delta morphology studies, include the grid-based colocation
pattern mining technique [142], Spectral Unmixing Algorithm
Based onDistanceGeometry [137], and the use of colorimetry
to estimate the proportion of classes in mixed pixels [157].
Finding solutions to sub-pixel information will not only help
advance morphological science forward but could also pro-
vide great impetus to the studies that will be forthcoming
using high-resolution satellite imagery.

Direction 2: Use of automated pattern recognition tech-
niques, universal applicability and algorithm transferabil-
ity across platforms

Although there exist several manual/semi-automated
methods to extract information from satellite imagery as
discussed in the sections above, we see great advantages in
extraction of information though automated techniques for
change detection which could reduce the errors due to opera-
tor bias and more efficiently partition and recognize patterns
and relationships in datasets.

In this context, we think that “Smart Data Discovery—the
idea of automating the identification of patterns and trends in

Table 3 The ranges of the
percentage lengths of extracted
shorelines, their average distances
from the real shoreline, and mean
robustness values for each
technique, for the entire suit of
deltas (10) analyzed

Technique Range of LE (%)
(median in parenthesis)

Range of DEA (m)

(median in parenthesis)

R mean

Unsupervised 78–100 (98) 40–239 (45) 1.72

SVM 36–99 (79) 42–340 (60) 1.17

Supervised 56–99 (87) 45–246 (87) 1.14

Random Forest 45–97 (76) 45–471 (78) 0.95

MNDWI 23–79 (50) 78–587 (229) 0.32

NDVI 29–70 (52) 105–623 (172) 0.31

PCA 4–84 (24) 75–2668 (427) 0.19
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large data sets” [139] can play an important role in feature
extraction from satellite big data. Smart data discovery is cur-
rently used increasingly in the business intelligence sector in
making informed market decisions [139]. We think, however,
that there is great potential for this technique in the domain of
satellite remote sensing to prepare and cleanse data more in-
telligently, automatically find hidden patterns and correlations
in data, especially where traditional and even semi-automatic
machine learning techniques are expensive, difficult and time
intensive to implement.

Algorithms that we develop also need to be near-
universally applicable. Localized algorithms which work per-
fectly in one particular region or for a particular size and type
of delta often do not performwell in other locations and is thus
of relatively limited use elsewhere. For the holistic study of
Earth’s geomorphology and its evolution, continental deltaic
dynamics is warranted. There is importance of looking at how
these landforms change at large scales prompting the need for
universal techniques. Such techniques are unfortunately yet to
be developed.

It is to be expected that the number of remote sensing
applications of delta morphology analysis will increase in
the near future due to continued extensions of freely available
satellite imagery archives (e.g., Landsat, MODIS), and in-
creased availability of higher resolution imagery via commer-
cial and government platforms. It is therefore important to
promote algorithm developments with the capability to be
transferred across platforms (e.g., to efficiently upscale and
downscale information from different spatial resolutions).
This will enhance their longevity and utility to the entire con-
stellation of satellites.

Direction 3: Improvement of ancillary data

In our and others’ view, inclusion of additional explanatory
variables that can differentiate spectral classes is more prom-
ising than enhancement of the image processing technique
alone [75]. Common examples include topographic data such
as digital elevation models, slope, aspect layers, geological
layers, data from active sensors such as synthetic aperture
radar or LiDAR, data from passive sensors, data from different
temporal rates of phenological changes in vegetation map-
ping, and anisotropy of land surface reflectance. The inclusion
of such data gives additional data layers of information that
can be utilized in the problem-solving framework (e.g.,
Figure 7: The additional information that contributes to the
understanding of deltaic evolution) to solve for the complex-
ities of the deltaic environment more easily.

There exist challenges, however, in collecting ancillary da-
ta. Firstly, there is a regional disparity in the quantity of data
collected. Although data is abundantly collected and housed
in most of the economically developed countries of the world,
data collection is sparse in developing countries. Second is the

bureaucracy of organizations which own these data. The lack
of open data policies makes it difficult for researchers to ac-
cess them. Thirdly, the culture of data sharing among re-
searchers. Research culture should orient itself in a direction
of openly sharing data subsequent to your own research for
other interested parties to build up on. This culture is gathering
momentum through public platforms like GitHub,
researchgate, HydroShare, and stack exchanges. We envision
the need for more subject-specific research repositories.

Direction 4: A global information system of deltaic data

One of the major challenges for researchers working in the
domain of deltaic remote sensing is that there is a lack of
ground truth data to validate their observations against. On
the other hand, field geomorphologists, who base their re-
search efforts on identifying changes in deltaic features on a
local scale, would immensely benefit from the “bigger pic-
ture” of the deltaic domain from the remote sensing commu-
nity. One of the major challenges has been to build a data
sharing bridge between these two communities. There current-
ly exists no portal/database/repository which offers different
types of data in relation to deltaic research. A repository for
river deltaic research similar to, for example, HydroShare
should be established. HydroShare [161], operated by the
Consortium of Universities for the Advancement of
Hydrologic Science, Inc. (CUAHSI), is an online collabora-
tion environment for sharing data, models, and code related to
hydrology. A delta repository could (conceptually) include
field data (e.g., soil types, point climate data, different land
use types) collected by field researchers, remotely sensed data
(e.g., locations and extents of deltaic features, land use class
delineations, temporal change of features), different numerical
models which model deltaic features (e.g., crevasse splays,
avulsions, shoreline changes), and publicly volunteered and
vetted geographic information. We believe that such a repos-
itory will foster collaborative and interdisciplinary research
and help to propel deltaic research to the next level.

8 Conclusions

River deltas are important landforms that serve many societal
and ecological functions. Assessing changes to delta morphol-
ogy is important to identify vulnerable areas and sustainably
manage deltaic land. Satellite remote sensing provides an ef-
fective way of detecting delta morphology change over time.

This review focused on remote sensing techniques that are
used in detecting delta morphology change. We discussed 18
such techniques, their strengths, and their caveats with regard
to deltaic feature extraction and change detection. The review
of literature suggests that sub-pixel algorithms such as spectral
mixture analysis and fuzzy logic yield very high accuracies,
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while machine learning techniques ranked second. Support
vector machines rank as the best individual machine learning
technique across reviewed literature. We also found that the
use of an ensemble of techniques (a machine learning tech-
nique ensemble, or a mix of machine learning and conven-
tional ones) yields high accuracies.

The choice of the technique(s) that one should preferably
use to extract features of a river delta is governed primarily by
the complexity of the delta. Simple deltas can be analyzed
using relatively simple techniques and vice versa. We also
found that the choice of technique depends on how data in-
tensive the algorithm is, the availability of resources (time and
computational resource), and the skill level of the user (e.g.,
machine learning applications requires specific skillsets). A
comparison study performed between ten deltas using seven
algorithms yielded unsupervised classification as the go-to
method for quick and robust delta-morphology-indicator
detection.

We discuss the pathway forward for future research by
recognizing the utility of using different delta morphology
remote sensing techniques on one particular river delta to gain
a better understanding of its landmass evolution, and also of
the importance of comparison studies across deltas to infer on
the similarities/dissimilarities of morphological changes and
identify strengths limitations of remote sensing techniques
themselves in different geographic/climatic conditions.

Four directions in which how future research will benefit
are presented. The importance of higher spatial resolutions
and the need for the development of more robust sub-pixel
detection algorithms to mine data from moderate resolution
imagery to more accurately infer on deltaic features such as
smaller channel avulsions and formation of splays is
highlighted. The importance of automated pattern recognition
techniques, universal applicability of algorithms, and
algorithm-transferability across platforms are discussed.
Thirdly, the effective use of ancillary data to make better
judgment calls during the deltaic feature extraction process
are brought forth, and finally, the concept of a repository
which houses different types of data and models pertaining
to deltaic research which is envisioned to foster interdisciplin-
ary collaboration are opined.
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