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ABSTRACT 

Sediment transport by rivers plays a key role in ecosystem functioning, biogeochemical 

cycling and geomorphological processes of the Earth. Human activities including land use 

changes, water diversions, and damming have profoundly altered natural fluvial sediment 

transport processes. Accurately modeling sediment transport can be of great use in elucidating 

the effects of these stresses on global river fluxes.  

To analyze the impact of anthropogenic modifications of the landscape and fluvial 

systems on global river sediment dynamics, three main research questions were investigated: (1) 

What is the sensitivity of fluvial sediment dynamics to soil properties (e.g. soil moisture) that 

govern soil resistance/erodibility? (2) What is the impact of sediment trapping behind dams on 

sediment dynamics in global rivers? (3) What are the individual and combined impacts of 

anthropogenic land use and damming on global fluvial sediment dynamics?  

To address the first research question, an extensive literature review and meta-analysis 

were conducted in Chapter 2 to develop a relationship between soil moisture and soil erodibility. 

The second research question was addressed in Chapter 3, by quantifying sediment trapping 

behind dams across the Continental United States (CONUS) using a novel remote sensing 

sediment dataset. The resulting sediment trapping dataset was used to develop a new reservoir 

trapping efficiency (Te) model. In Chapter 4, the Te model was implemented within a new global 

sediment flux model. The development of this new sediment model (termed WBMsed-ELM) 

described in Chapter 4, is used to answer the third research question by comparing multiple 

simulation scenarios in which the investigated drivers are isolated. 
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The results of Chapter 2 show that soil in the dry state has the lowest resistance to erosion 

and thus has a high erodibility, and erosion resistance increases (erodibility decreases) with 

increasing antecedent moisture content until a certain threshold. In order to incorporate this 

relationship in models, we presented an exemplar relation that captures the variation in erosion 

resistance with soil moisture content. In chapter 3, we developed data-driven CONUS and global 

models to predict Te in large-scale hydro-geomorphic models. Contrary to the common assertion, 

our results in Chapter 3 revealed that large reservoirs can have a wide range of Te values. The 

WBMsed-ELM model predictions in Chapter 4 showed that croplands alone have increased 

average global river sediment fluxes by 63.4% between 1960 and 2014. In contrast, dams have 

reduced the global sediment load to the ocean from large rivers by 19.1%. Considering the 

combined effect of land use changes and sediment trapping behind dams, WBMsed-ELM 

estimates that there is a net global increase of 6.4% in sediment delivery to the ocean, compared 

to pristine conditions. This new WBMsed-ELM framework provides several capabilities to 

explicitly simulate major river sediment processes and better represent individual and combined 

effects of anthropogenic stresses on global river sediment dynamics. 

Overall, this dissertation offers a global-scale perspective of key human drivers of 

changes in riverine processes, critical areas of sediment detachment, physical mechanisms of 

sediment transport in rivers, and provides a robust modeling framework for predicting and 

analyzing global-scale riverine sediment fluxes. 
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CHAPTER 1 

INTRODUCTION 

The world’s large rivers are not only a source of water for millions of people, but also an 

essential resource provider, a source of livelihood, and a major regulator of the overall health of 

the planet (Best, 2019). The transportation of sediment by rivers has a direct impact on Earth's 

ecosystems, biogeochemical cycles, and geomorphological processes (Vörösmarty et al., 2003; 

Walling and Fang, 2003). It plays a crucial role in shaping landforms such as deltas and the 

morphology of river channels and floodplains (Bamunawala et al., 2018; Ibáñez et al., 2019). 

Changes in fluvial sediment delivery towards the coast can affect deltaic systems, as deltas 

depend on the continued supply of sediment to offset the impacts of rising sea levels and ground 

subsidence (Darby et al., 2016; Dunn et al., 2019; Syvitski et al., 2009). Sediment serves as a 

major water quality indicator and increases the risk of floods through excessive sediment 

deposition (Battista et al., 2020; Lamb et al., 2020). Sediment transports eroded soil from 

hillslopes to downstream areas that contain nutrients as well as agricultural/industrial pollutants, 

acting as an important mode of nutrient and pollutant transport (Boardman et al., 2019; Walling, 

2009). The substantial role that particulate organic carbon plays in the Earth's terrestrial carbon 

budget is becoming increasingly evident. (Tan et al., 2017; Zhang et al., 2020). Changes in river 

sediment equilibrium can disrupt riverine, coastal, and marine ecosystem functioning, human 

water uses, and the stability of infrastructure (Battista et al., 2020; Vercruysse et al., 2017). 

Therefore, evaluating and predicting these changes in river sediment fluxes is essential to
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understand the quality of available water resources on the planet and the functioning of the earth 

surface processes (Haddeland et al., 2014; Tsuruta et al., 2018).  

Global fluvial sediment transport is vulnerable to a variety of stresses from human 

activities including land use changes, water diversions, and damming (Best, 2019; Lewis et al., 

2013). Rivers respond to such stresses in numerous, profound, and complex ways which can lead 

to various environmental consequences (Li et al., 2020). The construction of dams and 

impoundments for hydropower, flood control, irrigation, and water supply is among the greatest 

stressors to the connectivity and functionality of rivers (Vörösmarty et al., 2003; Zarfl et al., 

2015). Globally, there are now ~58,000 large dams (heights greater than 15 m) and ~3,700 dams 

that are planned or under construction (Best and Darby, 2020; Mulligan et al., 2020; Syvitski and 

Kettner, 2011). These impoundments collectively account for a cumulative storage capacity of 

~8300 km3, which is equal to around one-sixth of the total annual river discharge to the world’s 

oceans (Lehner et al., 2011a; Wada et al., 2016). Through trapping a large amount of sediment 

behind them, dams modify downstream flow regimes affecting sediment carrying capacities, and 

exacerbate bank erosion and riverbed incision due to sediment starvation (Best, 2019; Kondolf et 

al., 2014). Research has revealed that nearly 26% of the global sediment flux is trapped behind 

large reservoirs (Syvitski and Milliman, 2007). Construction of dams without assessing their 

potential consequences has led to degraded floodplains and coastal environments around the 

world (Latrubesse et al., 2017). Moreover, the increasing demands posed by burgeoning 

population growth are driving land-use changes, such as deforestation of catchment hillslopes 

and floodplains, urbanization, and agriculture, that can modify the quantity of sediment entering 

rivers through soil and bank erosion (Best and Darby, 2020). These changes in sediment supply 

can cause changes in sediment concentrations in rivers, and thereby river water quality (Lewis et 
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al., 2013). In order to understand how these stressors influence changes in river systems, new 

and innovative methods and data are required.  

Accurately modeling sediment transport can be of great use in elucidating the effects of 

these stresses on sediment dynamics. Although a general scientific understanding about the 

relationships between natural sediment transport processes and anthropogenic and human 

influences exists, including them in predictive modeling frameworks remains challenging 

(Cohen et al., 2014; Tsuruta et al., 2018). Such models are vital for understanding anthropogenic 

influences on riverine fluxes, studying the influence of individual stressors, simulating future or 

theoretical change scenarios, quantifying changes in ungagged locations, and predicting spatial 

and temporal dynamics across the river systems from local to global scales (Merritt et al., 2003). 

Although great advancements in simulating sediment fluxes at various scales have been reported 

over the past few decades (e.g. Hatono and Yoshimura, 2020; Li et al., 2022; Tsutura et al., 

2018), existing models still have a long way to go in terms of explicitly and accurately 

representing anthropogenic and climatic drivers over large spatial scales (Fagundes et al., 2020).  

The explicit representation of soil erosion in sediment models (e.g. Tan et al., 2018) is a 

step forward in this direction, however, it is itself a complex process involving a variety of 

interconnected, intrinsic, as well as dynamic properties of soil (Battista et al., 2020; Grissinger, 

1966). The stability of soil against erosion is dependent on the balance between hydrodynamic 

forces that cause erosion and the forces within the soil that resist it (Bryan, 2000). Therefore, 

estimates of spatial and temporal soil losses by erosion not only depend on the prediction of 

runoff generation, which has been studied extensively, but also on an accurate representation of 

the resistance of soils to erosion (Knapen et al., 2007). Soil resistance is a highly important 

parameter in models for realistically simulating the spatial and temporal variability in soil 
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detachment/sediment transport processes. Therefore, it is important to consider the intrinsic soil 

properties as well as dynamic environmental factors that govern the soil’s resistance to erosion, 

because the effects of climate and anthropogenic activities can also be manifested through their 

influence on the soil’s erosion resistance/susceptibility parameter. Within this backdrop, it is 

clear that predicting the contemporary changes in global riverine sediment fluxes needs a robust 

predictive framework that can accurately represent the drivers of change as well as how they are 

manifested in different components of the earth system.   

The overarching goal of this dissertation project is, therefore, to elucidate anthropogenic 

impacts and soil properties on global river sediment dynamics. In order to achieve this goal, 

three main research themes were explored; (1) Investigating the potential of improving sediment 

flux predictions by incorporating the influence of dynamic soil properties (e.g soil moisture) into 

the soil’s resistance/susceptibility parameter; (2) development of conceptual understanding and 

parameterization of sediment trapping behind dams; (3) development of a more process-based 

sediment model to explicitly simulate sediment transport processes and analyze the 

anthropogenic influence on global fluvial sediment dynamics. 

The corresponding three main research questions are: 

Question 1: What is the sensitivity of fluvial sediment dynamics to soil properties (e.g. soil 

moisture) that govern soil resistance/erodibility? 

This first phase of the project is focused on understanding the processes and mechanisms 

by which soil moisture affects erosion resistance of soils, and developing a generic equation that 

can be used to incorporate this relation in sediment yield assessment models.    

Question 2: What is the impact of sediment trapping behind dams on sediment dynamics in 

global rivers? 
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In order to address this question, the second phase of the dissertation involves the 

development of conceptual understanding and parameterization of sediment trapping behind 

dams for modeling efforts. A novel reservoir trapping efficiency (Te) parameter was developed 

using a recent, high-resolution, and spatially explicit remote sensing dataset, informing more 

realistic trapping of sediment at dams. 

Question 3: What are the impacts of anthropogenic land use and damming on global fluvial 

sediment dynamics? 

A new global sediment transport model with more process-based representations of Earth 

surface processes was developed. This new sediment transport model includes (i) a hillslope soil 

erosion component to represent sediment supply to rivers, (ii) more explicit and improved 

representations of anthropogenic factors (i.e. dam trapping and land use changes) that affect 

fluvial sediment dynamics, and (iii) more process-based soil erosion and sediment transport 

representations in place of current empirical equations. It was then applied to investigate how 

global river sediment fluxes change in response to anthropogenic activities. 

The above research questions form Chapter 2, 3, and 4 in this dissertation, respectively. 

Chapter 2 resulted in a journal paper titled “Representing the role of soil moisture on erosion 

resistance in sediment models: Challenges and opportunities” (Moragoda et al., 2022) published 

in Earth Science Reviews (Impact factor = 12.038). Chapter 3 led to a journal paper titled 

“Modeling and Analysis of Sediment Trapping Efficiency of Large Dams using Remote 

Sensing” (Moragoda et al., 2023) published in Water Resources Research (Impact factor = 

6.159). A manuscript corresponding to Chapter 4 titled “Simulating Anthropogenic Influence on 

Fluvial Sediment Dynamics using a Global River Sediment Model” is currently in preparation. 

Overall, this dissertation offers a global-scale perspective of key human drivers of changes in 
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riverine processes, critical areas of sediment detachment, physical mechanisms of soil erosion 

and sediment transport in rivers, and provides a robust modeling framework for predicting and 

analyzing global-scale riverine sediment fluxes. 
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CHAPTER 2 

REPRESENTING THE ROLE OF SOIL MOISTURE ON EROSION RESISTANCE IN 
SEDIMENT MODELS: CHALLENGES AND OPPORTUNITIES 

 
Abstract 

Soil’s resistance to erosion or its susceptibility to resist detachment is a key parameter in 

the majority of soil erosion and sediment models. Although soil resistance is a function of both 

the intrinsic properties of soil and dynamic environmental variables (e.g., soil moisture), the 

influence of the latter is seldom explicitly incorporated in the definition of soil resistance. The 

significant and complex role of soil moisture content on erosion resistance is recognized by 

many studies, however, much of the emphasis regarding the role of soil moisture on sediment 

yield modeling has been on its impacts on runoff generation rather than on soil resistance. In this 

paper, we synthesize the existing state of knowledge on the processes and mechanisms by which 

moisture affects erosion resistance of soil, and highlight the challenges and opportunities 

associated with incorporating this relation in sediment yield assessment models. Through a 

detailed analysis of literature, we find that dry soil has the lowest resistance to erosion and thus 

has a high erodibility, and erosion resistance increases (erodibility decreases) with increasing 

antecedent moisture content until a certain threshold. After this threshold is reached, soil 

resistance decreases with further increase in moisture content, and soils become more susceptible 

to erosion. Next, the study identifies the candidate variables that may be used to quantitatively 

represent the soil’s resistance to erosion vis-à-vis moisture, and discuss the challenges in 

incorporating this relation in modeling frameworks. As a way forward, through a meta-analysis
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of published data, we develop an exemplar relation that could be used to represent the variation 

in erosion resistance with soil moisture content. We find that the parameters of such a relation 

vary significantly across soil types, thus raising the possibility for developing a soil-type based 

moisture-resistance relations. Overall, this review underscores the considerable impact of 

antecedent soil moisture on the erosion resistance of soils, and makes a case for integrating the 

influence of dynamic soil moisture content on erosion resistance into predictive modeling 

frameworks.  

 

1. Introduction 

In the recent past, a large number of soil erosion and sediment models with varying 

representations of erosion, deposition, and transport processes have been developed. Their 

differences and consequent impact on predictions is a subject of several reviews (e.g., Aksoy and 

Kavvas, 2005; De Vente et al., 2013; Merritt et al., 2003; Pandey et al., 2016; Papnicolaou et al., 

2008) and model intercomparison studies (e.g., Bhuyan et al., 2002; Zi et al., 2019). Irrespective 

of the process representation used, the majority of the sediment models account for the role of 

soil’s resistance to erosion on sediment yield and/or erosion processes. Soil resistance, often also 

conversely termed as the susceptibility of soil to erosion by water, is a key physical property of 

the soil that indicates its ability to resist detachment by water flow or raindrop impact. It is 

frequently the reason for differential rates of yield and erosion across regions with different soil 

types (Goudie, 2013). It is also used to explain the changes in sediment yield in time, especially 

due to changes in land use. Although measured at a diverse range of spatial scales, ranging from 

point to bench to hillslope to watershed scales, the resistance property captures the erosion rate 

per unit area for a given erosivity from water flow or raindrop impact. In models, this term is 
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often obtained through calibration using measured soil erosion and other variables (Knapen et 

al., 2007). Although it is widely accepted that soil resistance is both a function of intrinsic 

properties of soil and exogenous dynamic environmental variables (Bryan, 2000; Paaswell, 

1973), the influence of the latter is seldom explicitly incorporated in the definition of soil 

resistance (Knapen et al., 2007). Soil moisture is one such exogenous environment property that 

has been known to impact soil’s resistance to erosion (Allen et al., 1999; Fell et al., 2017). 

An obvious and a widely studied effect of soil moisture on sediment yield is through 

runoff generation. Drier soils tend to generate less runoff (Chen et al., 2015) thus have less 

sediment transport capacity than a wet soil where more runoff is generated and more soil will be 

eroded (Flanagan et al., 1988; Wei et al., 2007). The influence of moisture content on soil 

erosion resistance and consequently on sediment yield, although relatively understudied, can also 

be significant (Luk and Hamilton, 1986; Knapen et al., 2007; Shainberg et al., 1996). For 

example, studies have discussed the importance of moisture on the development of cohesion 

forces in soil (e.g. Kemper et al., 1985; Panabokke and Quirk, 1957; Shainberg et al., 1996), and 

have reported a differential erosional response based on differences in antecedent moisture state 

owing to the resistance the soil develops against erosion (e.g. Govers and Loch, 1993; Parker et 

al., 1995; Poesen et al., 1999). Not only the spatial variation in soil moisture, but also the 

temporal variation in soil moisture at the beginning, during, and between individual rain events is 

vital for determining erosion resistance of soil. Despite its importance, a clear elucidation of the 

relationship between moisture and soil’s resistance to erosion for a range of soils has not yet 

emerged. Not surprisingly, this has resulted in non-consideration of the explicit role of 

antecedent moisture on soil’s resistance to erosion in most sediment models. 
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In this paper, we synthesize the existing state of knowledge on the role of moisture on 

erosion resistance of soil, and highlight the opportunities and challenges associated with 

incorporating such a relation in sediment yield assessment models. The focus here is on the 

fluctuation in soil resistance to erosion at as short as event time scale, as soil moisture dynamics 

may vary considerably at these scales (Katul et al., 2007; Rosenbaum et al., 2012). To this end, 

we, (i) review the literature on the influence of soil moisture content on erosion resistance and 

the processes and mechanisms associated with it, (ii) highlight the need to include the moisture- 

erosion resistance relationship in sediment models, (iii) detail the candidate variables that may be 

used to quantitatively represent the soil’s resistance to erosion and its relation to moisture, (iv) 

underscore the challenges and opportunities in incorporating the effect of soil moisture content 

on erosion resistance in modeling frameworks and (v) discuss future research directions. 

 

2. Influence of soil moisture content on erosion resistance: Contrasting variations and 
diverse physical controls 
 

Soil moisture affects resistance of soils to erosion through several mechanisms. Below 

we highlight the reported disparate relations between soil moisture and soil erosion resistance, 

and discuss varied mechanisms responsible for them. 

 

2.1. Increasing soil erosion resistance with increasing moisture content 

A large number of the studies agree that a completely dry soil has low resistance to 

erosion, and the resistance generally increases with increasing moisture (e.g. Cernuda et al., 

1954; Govers, 1991; Grissinger, 1966; Kemper and Rosenau 1984; Le Bissonnais and Singer, 

1992; Lyles et al., 1974; Nachtergaele and Poesen, 2002; Shainberg et al., 1996). Below, we 
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review studies that report an increasing (a decreasing) trend in soil’s resistance with moistness 

(dryness), and organize them based on the disparate mechanisms explaining the trend. Table 2.1 

provides a summarization of the assumptions and key findings of many of these studies. 

 

2.1.1. Slaking 

Slaking is often defined as the aggregate breakdown by increase in the pressure exerted 

by the escaping entrapped air during the rapid wetting process (Bastos et al., 2002; Kemper et al., 

1985). Although slaking itself is not erosion, it breaks down soil aggregates and makes the soil 

more erodible during intense rainfall or runoff events when the soil is wetted rapidly. It has been 

identified as a prominent cause for high erosion rates in dry soil (Auerswald, 1993; Lim, 2006; 

Shainberg et al., 1996). Panabokke and Quirk (1957) and Le Bissonnais et al. (1995) noted that 

in certain conditions, slaking can be more efficient at breaking down dry soils and increasing 

detachment capacity compared to raindrop impact. In clay soils, slaking caused by differential 

swelling was identified as responsible for the breakdown of aggregates (Kemper and Rosenau, 

1984; Panabokke and Quirk, 1957). Le Bissonnais and Singer (1992) attributed the increased 

aggregate stability of pre-wetted soil, as opposed to an air-dry soil, to a decrease in slaking. 

Diminished slaking decreases aggregate breakdown and the generation of smaller easily movable 

particles, thus also reducing crust formation. Le Bissonnais and Singer (1992) showed (Fig. 2.1a) 

that pre-wetted soils with high initial moisture content experienced low erosion rates compared 

to air-dried soils in successive rainfall events, 24 hours and 7 days apart. For the pre-wetted soil, 

the amount of splashed material that remained was little throughout the three consecutive rainfall 

events, although runoff increased 10-fold. In Cernuda et al. (1954), for all fifteen soil types 

tested, slaking and ease of destruction with water drops decreased with increasing initial 
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moisture content. Lyles et al. (1974) also supported the claim that much less soil was detached 

from field-moist soil than from air-dried clods by raindrops when other variables were kept 

constant (Fig. 2.1b). By measuring water absorption and expansion of clods, it was discovered 

that due to their initial larger water saturation, field-moist aggregates absorbed extra water 

slowly and hence resisted erosion (Kemper and Rosenau, 1984). Slower rates of wetting due to 

high soil moisture contents prevents entrapment of air and lowers differences in swelling, 

allowing a greater portion of the particles to remain cohered in the aggregates. Lim (2006) 

showed that the intensity of slaking (slaking slope), measured by the slaking test, increased 3 to 5 

orders of magnitude for a 30% reduction in the degree of saturation (Fig. 2.1c). Therefore, the 

rate of water absorption upon wetting has been suggested to be a good measure of soil 

erodibility, as it indicates the intensity of the disruption occurring due to wetting (Govers and 

Loch, 1993; Knapen et al., 2007). A few studies suggest that slaking maybe sufficient to 

breakdown even the highly cohesive clay soil (Kemper and Rosenau, 1984), and this effect is 

predominant over any softening or solution effect of water on aggregate breakdown (Cernuda et 

al., 1954). Overall, slaking causes more sediment to be broken down and become available for 

transport by runoff, while moist soils prevent slaking and limit the ability of the soil to be 

disaggregated (Legates et al., 2010). 
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Figure 2.1. (a) The change in erosion between initially air-dry and pre-wetted Solono soil for 
three consecutive rainfall events 24 hours and 7 days apart as reported in Le Bissonnais and 
Singer (1992), (b) Effect of moisture on soil detachment based on Lyles et al. (1974), (c) 
Changes in the intensity of slaking with degree of saturation in non-dispersive soils, as reported 
in Lim (2006). 
 
 
 
2.1.2. Microfissuration  

Another mechanism for the lower erosion resistance in dry soils has been attributed to the 

microfissuration occurring during the rapid wetting of initially dry soil (Govers and Loch, 1993; 

Govers et al., 1990; Le Bissonnais et al., 1989; Poesen, 1999). Larinov et al. (2018) 

experimentally found that drying of soil samples increase their erodibility due to soil cracking 

that decreases the amount and strength of inter-aggregate bonds (see Fig. 1 of Larinov et al., 
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2018). Poesen et al. (1999) reported that concentrated flow erosion rates were 20 - 65% less on 

initially wet topsoils compared to initially air-dry topsoils. Although air-dry soil had high 

infiltration rates and lower sediment concentrations in the initial phase of their flume experiment, 

high detachability due to slaking and microcracking of dry aggregates in the intermediate and 

final phases contributed to high erosion rates compared to initially wet soil. 

 

2.1.3. Cohesion from surface tension  

Lower erosion from moist soil has also been attributed to surface tension forces created 

by the water films that increase soil cohesion (Cernuda et al., 1954; Haines, 1925; Kemper and 

Rosenau, 1984; Kemper et al., 1985; Panabokke and Quirk, 1957). This cohesion provides a 

resistance against both the raindrop impact and shearing action of the flowing water. Govers and 

Loch (1993) conducted a field rill erosion experiment to determine the effect of the antecedent 

water content on the resistance of soil to erosion by overland flow in two clay soils. They found 

that variations in initial moisture content, which can contribute towards the development of inter-

aggregate bonds, can be linked to major changes in soil erodibility. In fact, the soil strength (both 

shear and unconfined compressive strength) and erosion resistance were found to be higher for 

soils with high moisture content than air-dried soils. The effect of surface tension created by soil 

water on erosion resistance has been experimentally investigated in several other studies 

(Kemper and Rosenau, 1984; Cernuda et al., 1954; Panabokke and Quirk, 1957). Kemper and 

Rosenau (1984) found that cohesional forces created by water are sufficiently large to provide a 

significant portion of the cohesion measured in the silty loam soil they used, however, this was 

not true for the tested clay soil. Panabokke and Quirk (1957) tested the water stability of various 

soil aggregates over a range of moisture tension values and found that the aggregates were most 
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stable at lower moisture tension values pF 2-3, i.e., at higher moisture contents, due to the 

capillary water films created by low tensions.  

The rate at which cohesion develops in disrupted soils is also slower in an air-dried soil 

than in a moist soil (Kemper and Rosenau, 1984; Kemper et al., 1985), and some studies have 

noted that moisture must be present for cohesion forces to re-form with time (Kemper et al., 

1985; Shainberg et al., 1996). Kemper et al. (1985) suggested that highest rate of cohesion 

increase takes place when the soils are wet, but have enough tension in the water to bind the 

particles strongly together. The moisture content supporting the most rapid formation of bonds 

after disturbances was about 0.21 g/g for Portneuf silt loam soil aggregates (Kemper et al., 

1985). Kemper et al. (1985) highlighted that after disruption of inter particle bonds through 

agricultural or construction activities, lack of time and optimal moisture content to retrieve soil’s 

cohesion plays a key role in the greater erosion rates of the tilled or disrupted soil. Cohesion, 

generally, also decreases with rapid wetting, mainly owing to the loss of bonding between soil 

particles/aggregates caused by the action of water (Bastos et al., 2002). 

 

2.1.4. Continuity of soil air in pore spaces  

Parker et al. (1995) observed an increased erodibility of a soil composed of 87% sand, 

4% silt, and 9% clay, with reducing initial soil water content between the moisture range 0.125 

and 0.200 kg/kg (Fig. 2.2), and attributed this to the influence of continuity of soil air in pore 

spaces with decreasing soil water content triggering more erosion.   
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Figure 2.2. Sediment concentration measured in runoff at t=150 seconds for different initial soil 
moisture contents based on Parker et al. (1995). 

 

 
2.1.5. Particle reorientation  

An experimental study by Shainberg et al. (1996) revealed that in the clayey grumusol, 

increased soil water facilitates the movement and reorientation of clay particles. This improves 

clay-to-clay connections and cementing of soil particles into a cohesive, erosion resistant 

structure. Therefore, rill erodibility of this clay soil decreased with increasing antecedent soil 

water content. Larionov et al. (2014) also suggested that water acts as a lubricant that causes 

uniform distribution of aggregates in soil, promoting cohesion between aggregates in their loamy 

soil. 

 

2.1.6. Runoff armoring  

The formation of a runoff water layer, which reduces the impact of raindrops and runoff 

on detachment and transport of sediment, was identified by Auerswald (1993) as contributing to 
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reduction in soil loss. Also, moist soil conditions can lead to more ponding on the surface which 

acts as a protective water armor that reduces raindrop impact (Hairsine and Rose, 1992; Holz et 

al., 2015). 

 

2.2. A decrease or an absence of any apparent trend in soil’s resistance to erosion with 
increasing moisture content 
 

In contrast to studies discussed in section 2.1, several studies have reported a decrease or 

absence of a defined relation in the variation of soil resistance with increasing moisture, or 

higher resistance in dry soil. Varied mechanisms have been noted to be responsible for it. Below 

we highlight these studies vis-à-vis the dominant controlling mechanism(s) in play. Table 2.2 

provides a summary of the key findings of many of these studies. 

 

2.2.1. Near-saturation effects  

Cernuda et al. (1954) reported that soil aggregates are easily eroded when soil was 

completely saturated. The effect of hydraulic and surface tension forces created by water films 

on the stability of soil aggregates is lacking in completely saturated soils (Bastos et al., 2002; 

Christensen and Das, 1973; Hanson and Robinson, 1993). After soil disturbance, when the 

aggregates were close to saturation, inter-particle bonds did not reinforce with time (Kemper et 

al., 1985). Kemper and Rosenau (1984) mentioned that in order for moisture to cause cohesion in 

soils, air pressure should remain greater than the pressure of the soil water. Govers (1991), using 

their flume experiment with a loamy soil (17% sand, 69% silt and 14% clay), presented a 

parabolic equation to calculate runoff erosion resistance vis-à-vis initial moisture content for 

soils with 2-20% initial moisture contents. For moisture contents exceeding 20%, the erosion 
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resistance was not dependent on moisture. Several other studies also imply that the increase in 

erosion resistance with antecedent moisture content is more important when the soil is drier, but 

when the moisture contents are closer to saturation, cohesion between aggregates and particles 

diminish and aggregate strength decreases resulting in high erosion rates (Bryan, 2000). 

Luk and Hamilton (1986) and Coote et al. (1988) are two of the few studies that claimed 

that soil loss increased and aggregate stability decreased with soil moisture. Coote et al. (1988) 

reported that aggregate stability was negatively correlated with soil moisture content from 16.5 

to 47.5%. However, Luk and Hamilton (1986) acknowledged that this observation may be true 

only for the data in the wetter range of the moisture scale. In the drier range, antecedent moisture 

may lead to an increase in soil strength and thus soil loss may decline until the moisture content 

corresponding to the plastic limit is reached. The plastic limit represents the soil moisture content 

at which the soil becomes malleable and clay begins to crack, and this reduces the shear strength 

of the material which increases its susceptibility to detachment (Allen et al., 1999; Holz et al., 

2015). Data in Luk and Hamilton (1986) did not cover the entire moisture range to be able to 

investigate this effect. Atterberg consistency limits, which empirically define soil behavior as a 

function of changing soil moisture content, could provide some guidance to determine the 

optimum soil moisture content that results in greatest erosion resistance (Bryan, 2000; Lyle and 

Smerdon, 1965), however, the utility of this measure alone for soil erodibility prediction has 

been questioned (Grabowski et al., 2011; Partheniades, 2007). 

 

2.2.2. Crust formation  

Kemper and Rosenau (1984) reported faster rate of wetting in drier soil resulted in more 

disruption of aggregates leading to interlocking of particles to make a structure that has greater 
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cohesion. Breakdown of aggregates from rapid wetting allows the resulting micro-aggregates and 

primary particles to later settle into tightly packed and well inter-leaved configurations, which 

would develop a greater soil strength when drying. This is also known as the surface sealing 

effect or crust formation. While soil crust formation could also be driven by several other 

biophysical and chemical mechanisms (Park et al., 2017; Williams et al., 2018), research has 

shown that aggregate break down and seal formation due to rapid wetting is faster in soils with < 

30% moisture than soils with > 30% moisture (Holz et al., 2015; Le Bissonnais et. al. 1989). 

Therefore, dry soil has a higher predisposition for surface sealing and once the crust is formed, 

dried crusted soil is more resistant to erosion. 

 

2.2.3. Entrapped air preventing water entry in dry soils  

Panabokke and Quirk (1957) reported that soils drier than pF 5.5 had higher aggregation 

due to entrapped air preventing water from entering pore spaces.  

 

2.2.4. Limited volume of fine pores  

In coarse textured soil with limited volume of fine pores required for slaking, low 

moisture conditions may not cause disruptive slaking during rapid wetting, thus does not cause 

higher erosion rates when soil is dry (Cernuda et al., 1954). 

 

2.2.5. Mineralogical influence upstaging moisture control  

Allen et al. (1999) did not find a significant relationship between moisture content and 

erodibility in loamy or clay soils. They suggested that when the clay content is greater than 10% 

in a soil, natural cohesive properties of clay becomes dominant and hinder the effect of moisture 
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on soil cohesion. Higher soil resistance for drier soils (Billings clay soil from Colorado) was 

reported by Kemper and Rosenau (1984), who attributed this to the difference in the bonding 

mechanism of the tested clay soil that facilitates clay-to-clay bonding during drying. An increase 

in erodibility with increasing antecedent water was also reported for unoriented coarse kaolinitic-

Greneda mixture (Grissinger, 1966). A negligible influence of soil moisture on erosion resistance 

was reported for dispersive soils (Lim, 2006), and loamy loess (Shainberg et al., 1996). 

 

2.3. Moisture-erosion resistance relation shows contrasting trend beyond the optimum 
moisture content at which erosion resistance reaches a maximum   
 

The two previous sections indicate that there could be an optimum moisture content 

beyond which the increasing trend in soil resistance with antecedent moisture may start 

decreasing (or at least do not show an increasing variation). Several studies have noted the 

existence of such an optimum moisture content (Grissinger, 1966; Larionov et al., 2014; 

Shainberg et al., 1996). In an experiment to test the effect of moisture content on the cohesion 

and erodibility of Chernozem soil samples, Larionov et al. (2014) found that the heavy loamy 

Chernozem samples (loess like loams) containing 22-24% water had the lowest erosion rate, and 

thus lowest erodibility (Figure 2.3). The erosion rate increased with both increasing and 

decreasing antecedent water content. In Grissinger (1966), erosion rates of different types of clay 

soils were evaluated by subjecting molded samples of various soil mixtures to a uniform erosive 

force in a small flume. Erodibility decreased with increased antecedent water for the Grenada silt 

loam, illitic-Greneda mixture, montmorillonitic-Greneda mixture, and oriented coarse kaolinitic-

Greneda mixture samples up to approximately 25% antecedent water content. After this point, 
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erodibility increased with further increasing antecedent water (see Figs. 2 to 7 of Grissinger, 

1966).  

	

	

	

	

	

	

	

	

	

 

Figure 2.3. Erosion rate of the soil sample as a function of water content as reported in Larionov 
et al., 2014 and Grissinger (1966). 
 

 
Varied reasons for the existence of optimum moisture content have been noted. 

Grissinger, (1966), Larionov et al., (2014), and Shainberg et al., (1996) attributed it to nonlinear 

variations in cohesion. Development of cohesive forces is absent in air-dry soils. Also, when the 

soil water content is close to saturation, the rate of cohesive force development is slow and the 

soils are also more susceptible to erosion. Between these, there is an optimum water content that 

yield the highest erosion resistance. Studies also noted that a minimum moisture content is 

needed for the development of interparticle forces, which are strong enough to resist rill 

erodibility (Shainberg et al., 1996; Luk and Hamilton, 1986). In the loamy loess soil that 
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Shainberg et al. (1996) used, the low-water-content treatment (246 g/kg) after 15 min of curing 

provided adequate water to support fast development of cohesive forces between soil particles 

that lead to low rill erodibility (see Fig. 2 of Shainberg et al., 1996). In contrast, the low-water-

content treatment in the clayey grumusol (322 g/kg) was lower than the critical water content 

required for the fast formation of cohesion forces. Consequently, the rill erodibility was still 

relatively high after 15 min in the grumusol. 

Overall, preceding studies highlight the existence of optimum moisture content at which 

soil’s resistance to erosion (soil erodibility) is maximum (minimum), with resistance decreasing 

with both increase or decrease in antecedent moisture. Notably, the optimum moisture content 

appears to be different for different soils. Larionov et al. (2014) and Grissinger (1966) both 

suggested that the influence of antecedent water content on erodibility varied among soils, 

depending upon the clay minerals in the mixture, clay particle orientation, bulk density of the 

sample, and particle size. In addition, aggregation characteristics such as aggregate size and 

shape which influence pore space geometry were also suggested to determine moisture-

erodibility relationship (Bryan, 2000). 

 

2.4. Ancillary dynamic factors that influence the moisture-erosion resistance relation 

Aforementioned studies highlight the role of soil moisture content on soil resistance to 

erosion. However, several studies have noted that in addition to the magnitude of the antecedent 

moisture in the soil, moisture-erosion resistance relation is also influenced by factors such as (i) 

the curing or aging time, and (ii) moisture at the time of compaction. Curing, also known as 

aging of soil, refers to the time for which the soil is left undisturbed, during which stable 

linkages develop. Kemper and Rosenau (1984) found that cohesive strength increases due to 

curing, after reaching a desired water content. Shainberg et al. (1996) found that aging of soil 
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samples reduced rill erodibility due to the development of cohesion forces with time, and that 

soil must be wet for these cohesion forces to develop. The rill erodibility values obtained by 

Shainberg et al. (1996) after 24 hours of curing were similar at all moisture contents. Thus, after 

reaching a critical moisture content, the effect of aging time on rill erodibility was more 

pronounced than that of soil water content.  

Moisture content at the time of compaction also has an effect on erosion resistance of 

soil. Compaction may be experienced during anthropogenic interventions related to agricultural 

and engineering activities. The erosion resistance increases as the compaction moisture content 

increases with the exception when soil is saturated (Christensen and Das, 1973; Hanson and 

Robinson, 1993; Wan and Fell, 2004). This increase in resistance was attributed to the influence 

of moisture on smoothening of the surface of the clay (Christensen and Das, 1973), reduced 

swelling during compaction (Hanson and Robinson, 1993), and an overall facilitation of the 

orientation of clay particles to a high cohesion low energy state (Grissinger, 1966). 

 

2.5. Soil moisture’s influence on erosion resistance at field or larger scales 

Beyond the laboratory scale experiments where studies have demonstrated a strong 

control of soil moisture on soil erosion resistance (see previous subsections for numerous 

examples), field scale studies have also noted the differences in sediment yield from wet and dry 

soils. Antecedent soil moisture at the start of a rain event is shown to be particularly important 

for soil erosion in field settings, due to its influence on soil’s resistance (Govers et al., 1990; 

Grissinger, 1966; Rauws and Auzet, 1989). The effect of initial moisture content alone can cause 

a few orders of magnitude change in runoff erosion resistance of loamy soils (Govers, 1991). 

Moderate to high intensity rainfall events occurring on dry, bare soil can lead to greater erosion, 
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whereas initially moist soil can be relatively hard to break down by the impact of raindrops or 

overland flow. This can lead to a range of sediment concentrations at the outlet for the same 

runoff/discharge values depending on high and low initial soil moisture conditions (Battista et al. 

2020). Nachtergaele and Poesen (2002) showed that morphological differences in gullies formed 

in winter and summer under similar erosive power were due to different initial soil moisture 

contents. Wide and shallow gullies in the summer were attributed to intense rain that hit an air-

dry top soil, whereas small winter gullies were formed when soil is at or near field capacity. In 

contrast to decreasing the runoff erosion resistance of soils, low initial moisture contents are also 

known to increase the infiltration capacity of the soil and decrease runoff generation, which can 

lead to a reduction in erosion (Sun et al., 2018). In an attempt to assess the relative significance 

of these two countering factors, Govers et al. (1990) found that a given rainfall event may lead to 

more erosion and sediment when the soil is initially dry, regardless of their higher infiltration 

capacity. The greater sediment yields in arid and semiarid zones (Collins and Bras, 2008; 

Istanbulluoglu and Bras, 2006) may also be because of the higher runoff detachability of dry soil, 

in addition to the reduced contribution of vegetation cover to provide protection against erosion 

(Govers et al., 1990). In arid and semiarid areas, the likelihood of precipitation events occurring 

on a dry soil is greater than in temperate or tropical settings (Pilgrim et al., 1988). Overall, 

reductions in soil erosion/sediment generation due to enhanced infiltration capacity and reduced 

runoff in dry soil can be potentially offset by high erosion rates of dry soil due to their low 

erosion resistance specially during intense rainfall events (Figure 2.4). Therefore, the influence 

of initial soil moisture content on erosion resistance may provide an explanation to the runoff-

sediment relationships observed at continental and global scales (Govers et al., 1990).  
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Figure 2.4. Peak erosion rate under rainfalls of low intensity long duration, moderate intensity 
and duration, and extreme intensity short duration, for soils in dry state (blue) and wet state (red), 
based on Ran et al. (2012). 
 

 
3. A need to define moisture-erosion resistance relationship in sediment modeling 

Aforementioned studies (discussed in section 2) emphasize that soil erosion models, 

especially those that perform predictions at seasonal, event, or finer temporal resolutions, should 

incorporate the effects of antecedent soil moisture content on soil loss predictions not only via 

runoff generation but also soil’s resistance (Luk and Hamilton, 1986; Poesen et al., 1999). It is 

also important to recognize and incorporate the spatial and temporal dimensions of this relation 

as well (Nachtergaele and Poesen, 2002). Spatially, local rainfall patterns and the fraction of 

runoff occurring on initially wet soil need to be considered when simulating soil loss (Govers 

and Loch, 1993), because the relative contribution of the amount of sediment produced in 

various areas of a catchment may highly depend on the spatial distribution of antecedent 

moisture content of the soil (Kim et al., 2016; Zi et al., 2019). Given the fact that antecedent 
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moisture can cause several orders of magnitude change in erosion (Govers, 1991), accounting for 

its spatial distribution may help reduce errors in sediment simulations. Temporally, the variation 

in moisture content on sediment response during a single rainfall event as well as a series of 

events needs to be considered. When a series of rainfall events occur after a dry period, sediment 

production may be largest in the first storm, and erosion resistance will increase in subsequent 

events due to soil becoming moist and also due to surface sealing effect (Govers, 1991). As one 

of the few studies that considered the time series of soil loss, Luk and Hamilton (1986) 

recognized the complexity that is added to the erosion resistance-soil moisture relationship by 

the variation in soil moisture content over time during a single rainfall event. During a single 

event, for dry soil, the variability in sediment concentration can be higher, and peak sediment 

concentration can occur toward the beginning of the event as more dry, easily removable 

materials are available (Figure 3 of Ran et al., 2012), whereas on moist soil, sediment 

concentrations can be largely constant in time (Govers, 1991). Although antecedent soil moisture 

content during and between individual storm events is most vital for determining erosional 

response, erodibility is also influenced by soil moisture regime over longer time periods (Bryan, 

2000). Many studies have shown that recurring wetting–drying cycles can result in a decline of 

aggregate stability (Bryan, 2000; Shiel et al. 1988), while there can be complex responses with 

both increased and decreased stability considering disturbed and undisturbed soils (Utomo and 

Dexter, 1982). At longer time scales (e.g., annual to interdecadal) as well, changes in moisture 

regimes due to variations or changes in climate may result in variations in soil erosion resistance. 

In summary, spatially and temporally dynamic relationships of soil resistance needs to be 

incorporated in sediment models for both short- and long-term predictions. 
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All the evidence presented here suggest that the use of a single value for erodibility can 

cause serious errors in trends and magnitudes of predicted erosion, especially for event scale 

simulations. It is important that the variation in soil erosion resistance through time and space 

vis-à-vis the influence of initial soil moisture contents be considered in erosion resistance 

variables (Nachtergaele and Poesen, 2002). 

 

4. Candidate variables for quantifying the soil’s resistance to erosion vis-à-vis 
antecedent moisture 
 

To account for the role of moisture on soil erosion resistance, several candidate variables 

exist. These include soil cohesion (Haines, 1925; Kemper and Rosenau, 1984), aggregate 

stability (Cernuda et al., 1954; Kemper and Rosenau, 1984; Panabokke and Quirk, 1957), 

erodibility (Allen et al., 1999; Grissinger, 1966; Larionov et al., 2014; Parker et al., 1995; 

Shainberg et al., 1996), soil loss/rate of erosion (Govers et al., 1990; Le Bissonnais and Singer, 

1992; Lim, 2006; Luk and Hamilton, 1986; Lyles et al., 1974), intensity of slaking (Lim, 2006), 

critical shear stress (Allen et al., 1999; Gilley et al., 1993; Nachtergaele and Poesen, 2002), and 

shear strength (Govers and Loch, 1993; Yokoi, 1968). More details regarding each variable vis-

à-vis the soil resistance property they encapsulate are listed below.    

 

4.1. Erodibility 

Erodibility is a widely used lumped parameter that captures the average annual soil 

erosion from a standard plot. It is used in a range of models, including the Universal Soil Loss 

Equation (USLE, Wischmeier and Smith, 1978) and modified USLE, ANSWERS (Beasley et al., 

1980), GUESS (Carroll et al., 1986), and SWAT (Arnold et al., 2012). Erodibility (or K-factor) 
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is used to indicate the resistance that soils have against the effect of raindrops on the soil surface 

and the shearing action of runoff between soil clods (FAO, 2019). It is quantified as the average 

rate of soil loss per unit rainfall erosivity from a cultivated continuous fallow plot with 9% slope 

and 22.1 m length. Since direct measurement of the K-factor for each soil configuration is 

implausible, data from long-term erosion measurements at standard field plots has been used to 

generate a soil erodibility nomograph, which relates erodibility to inherent properties of the soil. 

Specifically, a soil erodibility nomograph relates the K-factor to soil parameters such as 

percentage of silt, percentage of sand, percentage of organic matter, and structure and 

permeability classes (Wischmeier et al., 1971). Since it was first developed, the nomograph has 

formed the basis for soil erosion prediction in many parts of the world. Later, a sixth variable, 

namely rock fragment cover, was added by Wischmeier and Smith (1978). In summary, 

erodibility is often parameterized as a constant value for a given soil type (Bryan, 2000; 

Nachtergaele and Poesen, 2002).  

Notably, erodibility does not explicitly account for the impact of soil moisture on soil 

resistance. Given that standard erosion plots with identical soils in two different 

hydroclimatological settings can yield different sediment amounts, erodibility estimate is after all 

not agnostic of local hydroclimatology (and associated hydrologic states such as the soil 

moisture regime) at the measurement plot (Coote et al., 1988; Govers and Loch, 1993; 

Grissinger, 1966). Hence, its estimate based on data from experimental plots may be affected by 

moisture regime of the setting where the observations were made (Bryan, 2000). This limitation 

is being increasingly recognized and attempts are being made to address this concern. For 

example, Dangler and El-Swaify (1976) calculated K values for wet and dry soil conditions, and 

Hosoyamada (1986) calculated cold and warm K values. Seasonal effects on the USLE K, 
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intended to capture the effect of freezing and thawing processes and other factors influencing the 

temporal variations in soil erodibility including antecedent soil water (Alewell et al., 2019; 

Mutchler and Carter, 1983), are also being considered. However, these do not and are not 

intended to exclusively represent the full effects of the soil moisture content on erosion 

resistance. Govers et al. (1990) conducted experiments in a 20 m flume to evaluate the changes 

in the erosion resistance of a loamy soil due to compaction and initial moisture content. The 

constant 𝑘" (measured in kg/(m h (m3/h)5/3), which is proportional to the total soil loss, was 

found to be reasonably well predicted using a parabolic equation with percent initial gravimetric 

moisture content (𝐺𝑀𝐶&) being one of the independent variables: 

 

 𝑘" = 2005.63 − 157.47𝐺𝑀𝐶& + 3.23	𝐺𝑀𝐶&5   (1) 

 

Allen et al. (1999) conducted field experiments using a submerged jet apparatus to 

calculate the erodibility coefficients in alluvial soils along stream channels. Increasing moisture 

contents yielded lower erodibility coefficients for moisture content range ~ 6 to 21% for sand/silt 

textured alluvial soil along stream channels. Using multiple regression analysis on different soil 

parameters, erodibility coefficient, 𝐾, (measured in cm/hr/Pa) was derived for soils with less than 

10% clay, 

 

 𝐽𝑒𝑡	𝐼𝑛𝑑𝑒𝑥 = −0.0272 + 0.000459𝑆𝑎𝑛𝑑 − 0.0004752𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒   (2) 

 𝐾 = 0.003𝑒FGHIJK	LMNJO   (3) 

 

This equation indicates that, for soils with less than 10% clay, antecedent moisture 

content is important in determining soil erodibility measured by the submerged jet test, and the 
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erodibility increases with decreasing moisture content. Preetha and Al-Hamdan (2019) 

developed a method to dynamically predict the modified USLE erodibility factor or K factor for 

a selected watershed and identified it to be affected by five variables one of which is soil 

moisture content. The robust correlation between the K value (measured in ton ha hr/ha MJ mm) 

estimated from the multiple linear regression model and the measured K indicated that the using 

soil moisture content as a predictor variable (R2 = 0.84, p < 0.05) provides a better estimate of 

soil erodibility in areas with notable temporal variability in land cover. Two regression equations 

were developed,  

 

 𝐾 = 	−0.059 + 0.161𝐴𝑊𝐶 + 0.134𝐵𝐷 − 0.000062𝑃;	 								𝑅5 = 0.898   (4) 

 

 𝐾 = 	−0.064 + 0.173𝐴𝑊𝐶 + 0.122𝐵𝐷 − 0.000044𝑃	 + 7.699𝐿𝑆	

+ 	0.0081𝐶;											 	𝑅5 = 0.903 

  (5) 

 

where, 𝐴𝑊𝐶 is antecedent soil moisture content (%), 𝐵𝐷 is bulk density (g/cm3), 𝑃 is soil 

permeability (mm/h), 𝐿𝑆	is USLE slope length and steepness (m), and 𝐶 is USLE crop 

management factor. Studies such as these are promising. However, a relation defining the 

variation in erodibility with moisture for a range of soil types still remains unidentified.  

 

4.2. Soil cohesion 

Soil cohesion is another variable that is used to represent the resistance of soils to 

erosion. Kemper and Rosenau (1984) presented equations to calculate the cohesion forces due to 

hydraulic pressure and surface tension. Using the results of their study, they suggested that 

pressure difference between air and water i.e., (𝑃Z − 𝑃[), and the soil volume occupied by water, 
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𝜃, (m3 m-3) could provide an estimate of the cohesion in bulk soils due to hydraulic pressure, F^_, 

(N/m2) as follows: 

 

 𝐹ℎ𝑠 = 𝜃 𝑃𝑎 − 𝑃𝑤    (6) 

 

The cohesion associated with surface tension forces was calculated by assuming spherical 

pores with an air water interface around their perimeter that applies a surface tension. Therefore, 

a given pore of radius 𝑟&, produces a cohesion of, 2𝜎𝜋𝑟& in the soil. 𝜎 is the surface tension of the 

air-water interface measured in N/m. The cohesional force due to surface tension in the soil, F__, 

was estimated using 

 
𝐹𝑠𝑠 = 	

𝜃𝑖
𝜋𝑟𝑖

2 2𝜋𝑟𝑖𝜎 = 2𝜎
𝜃𝑖
𝑟𝑖

𝑛

𝑖=1

𝑛

𝑖=1

 
  (7) 

 

The summation of cohesional forces created by water phase hydraulic pressure and 

surface tension were sufficient to explain the measured soil cohesion for these soils. In spite of 

these quantitative theoretical developments, a review performed by Jain and Kothyari (2009) 

showed that quantitative relations between the effect of cohesion and erosion/sediment transport 

processes have not been established yet.  

A few efforts have been made to incorporate the influence of soil moisture conditions on 

cohesion. Zi et al. (2016) incorporated the dependency of soil cohesion on soil moisture in the 

spatially-explicit, sediment erosion, deposition and transport module they developed for the 

GEOtop distributed hydrological model. They used soil cohesion to represent the soil’s 

resistance to erosion and calculate rainfall splash detachment 𝐷e (kg m-2 s-1) using  
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 𝐷𝑅 = 0.1033
𝐾𝑒
𝜁
𝑒−1.48ℎ + 3.58 ∗ 𝐼   (8) 

 

where ζ is soil cohesion (kPa), 𝐾J is rainfall kinetic energy (J/m2 mm), ℎ is depth of 

overland flow (m), and 𝐼 is the precipitation intensity (mm/h). This cohesion term is a 

combination of the effect of soil moisture and root tensile strength on cohesion (𝜁). 

 

 
𝜁𝑠 = (

𝜃
𝜃𝑠
)
2

	𝜁𝑠𝑠 
  (9) 

 𝜁 = 	 𝜁ZNN + 𝜁h (10) 

 
where 𝜁h, 𝜁hh, 𝜁ZNN are bare soil cohesion, saturated bare soil cohesion and cohesion 

added by roots respectively, 𝜃 and 𝜃h are the moisture content and the saturated moisture content 

of the soil respectively.  

Although cohesion seems to be the right parameter to represent the resistive forces of 

soils against water erosion, its magnitude as measured by a torvane under saturated conditions, is 

not very appropriate for studying the spatial and temporal variability in soil erosion resistance 

(Govers et al., 1990; Knapen et al., 2007). This is because, all the soil and environmental 

properties affecting the soil’s erosion resistance (e.g. tillage effects, roots, rock fragments etc.) 

cannot be represented by variations in cohesion. Notably, even if a nomograph connecting the 

easily observable soil properties to cohesion under saturated conditions were available, a need to 

incorporate the influence of soil moisture conditions on cohesion for a wide range of soils still 

remain. 
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4.3. Aggregate stability 

Aggregate stability is another variable used to define soil resistance to erosion. Grissinger 

(1966) related erosion contribution from aggregate instability to the rate of sample wetting. This 

empirical relationship is given by (Paaswell, 1973), 

 

 𝐸𝑅 = 𝑏 ∗ 𝑝(
∆water
time

) (11) 

 

where, 𝐸𝑅 is erosion rate, 𝑏 is regression constant, and 𝑝 is sample porosity. Auerswald 

(1993) presented the following equation that explained 81% of the variation in soil loss (𝑆𝐿) in 

t/ha using only two variables; antecedent soil moisture (𝐴𝑆𝑀) in % wt., and time since tillage 

(𝑇𝑠𝑇) in days. They attributed the increased stabilization of soil against erosion with increasing 

moisture between 10-31%, to two processes that reduced aggregate breakdown; reduced slaking, 

and the development of a protective water mulch that reduced splash.  

 

 𝑆𝐿 =
1

−0.027 + 0.0022 ∗ 𝐴𝑆𝑀 + 0.006 ∗ 𝐴𝑆𝑀 ∗ 𝑇𝑠𝑇
 (12) 

 

Le Bissonnais (1996) proposed a unified framework to measure aggregate stability that 

can be used to effectively measure soil’s susceptibility to erosion. However, Le Bissonnais 

(1996) and Le Bissonnais and Singer (1992) both noted that aggregate stability tests will not 

provide a comprehensive assessment of crusting and erodibility. A quantitative relation between 

aggregate stability and soil moisture remains undetermined.  
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4.4. Flow shear stress and soil shear strength parameters 

Flow shear stress and soil shear strength parameters have also often been used to evaluate 

erosion-related soil properties (Briaud et al., 2001; Nearing and West, 1988; Nearing et al., 1988; 

Shainberg et al 1996). Nachtergaele and Poesen (2002) demonstrated that detachment rate (Dr) in 

kg m-2 s-1 for a given loamy soil horizon, could be predicted using only flow shear stress and 

initial gravimetric moisture content: 

 

 𝐷𝑟 = 𝑛𝑤𝑔2 − 𝑚𝑤𝑔 + 𝑝 𝜏 + 𝑏 (13) 

 

where, 𝑤x is initial gravimetric soil moisture content (kg kg-1), 𝜏 is flow shear stress (Pa) 

and 𝑛, 𝑚, 𝑝 and 𝑏 are constants. They derived these coefficients as well as the lower and the 

upper limit of the initial gravimetric moisture content that is applicable. Values of 𝜏 which 

represents the force of the moving water flow against the soil bed was calculated using water 

density, acceleration due to gravity, width of the experimental channel, flow velocity, flow 

discharge, and slope gradient. Detachment calculated using this equation resulted in a R2 of 0.83 

for the top soil layer with observed values. However, some researchers have reported little or no 

correlation between critical flow shear stress and soil erodibility (Knapen et al., 2007; Laflen et 

al., 1991; Mamo and Bubenzer, 2001), and erodibility and soil shear strength (Ansari et al., 

2003; Knapen et al., 2007; Parker et al., 1995). They reported that factors or processes that affect 

critical flow shear stress or shear strength of soils do not necessarily affect erodibility and vice 

versa.  

The above review indicates that while some promising advances have been made in 

regards to quantifying the soil’s resistance to erosion and estimating the influence of soil 
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moisture content, they have mostly been performed for specific catchments, soil categories, and 

resistance variables. Challenges associated with measuring or estimating resistance variables 

across a range of soil types and properties remain.  

 

5. Synthesis 

Based on the review presented above, next we discuss the potential challenges and 

opportunities in incorporating the effect of soil moisture content on erosion resistance. 

 

5.1. Challenges  

A multitude of challenges exist towards representing the influence of soil moisture on 

soil erosion resistance. These include: 

i) There are a number of parameters used to represent the soil’s resistance to erosion. Each 

parameter, be it erodibility, cohesion, shear stress, or aggregate stability, includes various 

erosional processes and any single parameter does not capture all the processes involved 

in erosion or all the factors that influence soil erosion resistance. Also, the way these 

variables are measured are different, and many a times the same variable is measured 

differently. Most importantly, the implementation of these parameters lacks explicit 

representation of the dynamic nature of soil and environmental factors that govern 

erosion resistance. This poses a major challenge in incorporating the relationship between 

soil moisture content and erosion resistance in soil erosion and sediment models.   

ii) Studies report various factors affecting the control of soil moisture on erosion resistance, 

including the type and percentage of clay minerals in the mixture (Grissinger, 1966; 

Larionov et al., 2014), clay particle orientation (Grissinger, 1966), curing/aging time 
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(Kemper and Rosenau, 1984; Kemper et al., 1985; Le Bissonnais and Singer, 1992; 

Shainberg et al., 1996), bulk density of the sample (Grissinger, 1966), organic matter 

content (Cernuda et al., 1954), soil type (Shainberg et al., 1996), and texture/particle size 

(Allen et al., 1999; Grissinger, 1966; Kemper and Rosenau, 1984; Larionov et al., 2014). 

In general, there are no clear guidelines as to how prominent soil moisture influence will 

be on soil erosion resistance under a certain combination of soil physical conditions. 

Moreover, contradictory results are often reported for some parameters. For example, 

when the influence of texture is concerned, Allen et al. (1999) found that antecedent 

moisture content is important in determining soil erodibility for soils with less than 10% 

clay, but no significant relationship when clay content is higher. However, in many other 

studies, discussed above, water content in soils of diverse textural classes, including fine 

grained soils, has been found to have an influence on erosion resistance and this effect 

also shows conflicting results for some soil types (Kemper and Rosenau, 1984). No 

standardized relations have been derived (for different soils) that can help parameterize 

models easily.  

iii) Most of the studies have been conducted under controlled settings. Notably, the standard 

laboratory tests often use small disturbed samples (Holz et al., 2015). Although these data 

are useful to assess the behavior of agricultural soils, most of the time they neglect the 

natural structure and macroporosity of the soil. In the context of fluvial geomorphology 

and hydrology, it is essential to consider the behavior of soil in natural undisturbed 

settings. Unfortunately, our understanding of the behavior of natural soils, especially in 

complex topographic or forested conditions, where structural characteristics of soil are 

usually different from agricultural soils (Chaer et al., 2009), is greatly lacking. Therefore, 
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more appropriate tests that use much larger blocks that mimic natural soil conditions or 

soil in natural state are needed in order to understand the effect of dynamic soil properties 

on erosion resistance (Bryan, 2000). 

iv) It is clear that soil resistance variables such as erodibility are not a single constant value 

for a given soil type, but they are strongly influenced by spatially and temporally 

dynamic intrinsic soil properties and extrinsic environmental conditions. The USLE 

erodibility or K-factor is purely a lumped, empirical parameter and intended to provide a 

practical tool to aid in agricultural decision making. It is not intended to apply for 

complex soils and topographical conditions which are typically of interest in sediment 

modelling. Also, it was designed to capture long-term response patterns and was not 

envisioned to provide the spatial and temporal variability necessary for event-based 

predictive modelling. In the long term, researchers propose that a standardized erosion 

resistance parameter that can integrate dynamic properties such as soil moisture need to 

be introduced, for use in dynamic sediment modeling (Bryan, 2000; Knapen et al., 2007). 

 

5.2. Opportunities 

Equations provided by various studies that are discussed in section 4 provide the basis for 

incorporating moisture’s influence on soil erosion resistance in sediment yield predictions. 

Specially equations proposed by Preetha and Al-Hamdan (2019) and Zi et al. (2016) can be 

important starting points. However, generic equations that can be easily parameterized based on 

soil properties, as is done using nomographs for soil erodibility (Wischmeier et al., 1971), will 

likely be more useful for future soil erosion and sediment modeling efforts.  
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Figure 2.5.  Variation of soil moisture content and soil erosion rates presented by various studies. 
Blue, red, and green colors indicate clay, loamy, and sandy soils, respectively. Soil types and 
their data sources corresponding to the legend entries are provided in Table 2.3. The unit erosion 
rate (calculated in g/m2/s) is log-stretched to aid visualization. 
 
 

Given the fact that there is some coherence in the relation between soil resistance to 

erosion vis-a-vis soil moisture reported in literature, we compared the experimental observations 

reported for 13 soil samples from 6 different studies after transforming the reported erosion 

values into erosion rates per unit surface area (Figure 2.5). These studies report experimentally 

determined soil erosion values for different antecedent soil moisture contents. All studies that 

reported soil moisture data along with soil erosion values that were either in (or could be 

converted to) erosion rate per unit surface area, were included in this meta-analysis. It is to be 
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noted that these studies have significant differences in methodologies as well as experimental 

conditions. These differences are in the definition of erosion, choice of erosion measurement 

device, slope, soil compaction, rainfall duration and characteristics etc. Despite these differences, 

and the fact that erosion rates span over several orders of magnitude, all the relationships 

presented here show a fairly consistent trend where erosion rate decreases as initial moisture 

content increases, and for some, beyond a threshold moisture content, erosion rate starts 

increasing again. Overall, these variations can be represented by a generic quadratic equation of 

the form, 

 

 𝐿𝑛
𝐸
𝐸N

= 𝜎𝜃5 − 	𝑏𝜃 (14) 

 

where, 𝐸 is the erosion rate per unit area of the soil (g/s/m2) at a given moisture content, 

𝐸N is dry soil erosion rate (erosion rate at 8% moisture), 𝜃 is soil moisture content (%), and 𝜎 

and 𝑏 are constants. Equation 14 was fitted to the data obtained from meta-analysis of literature. 

Derived parameter values of this relation for each soil type are summarized in Table 2.3. Table 

2.3 and Fig. 2.5 highlight that parameters (in equation 14) for silt/loam, clay, and sand are quite 

distinct. If 𝐸N  can be measured for a given soil, equations such as this may allow for the 

estimation of 𝐸 at a particular soil moisture content. Although here the relation has been derived 

between ( y
yz

) and 𝜃, ratio of other soil resistance variables can be considered in place of ( y
yz

).  

The ‘optimum moisture content’ at which moisture vs. cohesion relation changes trend, in other 

words the moisture content at which the erosion resistance is maximum, appears to be in the 

range of 19%-26% soil moisture depending on the soil type, given that they are cured for at least 

4 hours. This range was derived based on seven soil types including sandy, silty and clayey soils 
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as reported by 5 studies reviewed in this paper (Govers, 1991; Grissinger, 1966; Larinov et al., 

2014; Nachtergaele and Poesen, 2002; Shainberg et al., 1996). However, this range may differ 

for other soil configurations depending on the types and fraction of clay minerals present, 

organic matter content, and other soil conditions. More confidence in the model structure and the 

magnitude of optimum moisture content may be established by collecting data from a large 

number of soil samples with different soil types and configurations. 
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Table 2.3. Parameters of equation 14 for each soil type, as derived in figure 2.5. 

 

Soil 
type Soil name 

Regression coefficients 
R2 Reference 

𝝈 𝒃 
 Silt/loam  

S1 10% Natural silt - Grenada 
silt loam 0.2838 12.287 0.853 Grissinger (1966) 

S2 10% Illite - Grenada silt 
loam 0.0795 4.0714 0.985 Grissinger (1966) 

S3 
Caen silt loam with 8.5% 
sand, 76.2% silt and 15.3% 
clay 

0.1948 9.4951 0.962 Govers et al. 
(1990) 

S4 Loamy soil with 17% sand, 
69% silt and 14% clay 0.0014 0.0709 0.999 Govers (1991) 

S5 5% Ca montmorillonite - 
Grenada silt loam 0.1891 8.5869 0.989 Grissinger (1966) 

S6 Heavy loamy Chernozem 
samples 2.8119 134.22 0.959 Larionov et al. 

(2014) 

S7 Grenada silt loam with 20% 
clay, 74% silt, 6% fine sand 0.3075 11.732 0.984 Grissinger (1966) 

S8 5% Illite - Grenada silt 
loam 0.0238 3.2816 0.939 Grissinger (1966) 

 Clay  

C1 Kaolinite-sand mixture 0.0010 0.0902 0.958 Christinsen and 
Das (1973) 

C2 Grundite clay 0.0002 0.0156 0.945 Christinsen and 
Das (1973) 

C3 Grundite-sand mixture 0.0004 0.0361 0.908 Christinsen and 
Das (1973) 

C4 Kaolinite clay 0.0004 0.0438 0.949 Christinsen and 
Das (1973) 

 Sandy  

A1 Loamy sand soil with 87% 
sand, 4% silt, and 9% clay -0.0002 0.0062 0.775 Parker et al. 

(1995) 
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6. Future research directions 

Deriving robust quantitative relations that capture the influence of antecedent soil 

moisture on erosion resistance of soils, and methods (preferably resembling a nomograph) for 

easy parameterization of such relations, remain a high priority for fluvial geomorphology 

research. Based on the above review, several short-term and long-term future research needs can 

be identified.  

Future short-term research need to be directed towards a better understanding of how 

antecedent moisture content in soils affect erosion resistance under rainfall events of different 

intensities and soil types. This should include experiments designed to understand the role of rain 

intermittency and duration. Much of the work, so far, has been conducted under controlled 

laboratory conditions involving a limited number of samples. Transferring small lab-scale 

experimental results to large-scale systems could face challenges associated with 

representativeness of the samples and transferability of derived relations. Field research in 

natural settings and laboratory experiments involving large undisturbed soil blocks can be useful 

in this regard, as it can provide a more comprehensive picture for realistic settings and thus 

potentially broaden the applicability of results.  

As noted in this study, soil moisture’s impact on soil’s resistance to erosion is generally 

contradictory to its effects on runoff generation and consequent sediment erosion. For example, 

higher soil moisture generally increases the soil’s erosion resistance, but leads to higher runoff. It 

is important to conduct research to understand how and when these countering factors 

overwhelm the other under different soil, environmental, and rainfall conditions.  

One potential strategy to isolate the influence of moisture content on soil resistance to 

erosion is to study the sediment yield variations between events with identical runoff, and then 
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evaluating these relations over a range of runoff magnitudes. The derived relations using data 

from training-years may then be used in test-years to assess the improvement in explainability of 

sediment dynamics, when moisture’s influence on soil resistance is explicitly accounted for. To 

limit the challenges posted by heterogeneity of soil types, initial explorations may focus on 

hillslopes or watersheds with homogeneous soil distribution. Follow-up studies may assess the 

applicability of these relations across different soils, and over larger settings with significant soil 

moisture heterogeneity arising from spatial variations in topography, soil types, and other 

physiographic attributes (Wilson et al., 2004).  

Although factors such as type and percentage of clay minerals, clay particle orientation, 

curing/aging time, bulk density of the sample, organic matter content, soil type, and 

texture/particle size have been identified to have an influence on moisture vs. erosion resistance 

relation, no clear understanding exists as to how prominent this effect might be or how to 

quantitatively incorporate the influence of these factors. Data of sediment yield from diverse 

sources over the landscape, which can be aided by methods such as sediment fingerprinting 

(Smith and Blake, 2014), and from multiple, well-instrumented watersheds such as the critical 

zone networks (Anderson et al., 2008) may serve useful. Overall, the aforementioned proposed 

explorations will likely lead to improvement in the understanding and prediction of soil erosion 

resistance dynamics over large spatial and temporal scales, and will especially help capture the 

impacts of extreme events on sediment yield better as the system transition from dry to wet 

conditions.  

In the long-term, in agreement with Bryan (2000) and Knapen et al. (2007), we propose 

that soil erosion and sediment prediction research needs to define a standardized erosion 

resistance parameter that can integrate dynamic controls such as soil moisture. In addition, as 
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discussed in the previous sections of this study, the resistance property being measured for 

quantification of this parameter should be standardized as well. Differences in measurement 

method and the resistance property across applications pose a major challenge for incorporating 

the dynamic influence of moisture on erosion resistance. Future research focused on evaluation 

of this dynamic resistance parameter and its ability to capture sediment yield dynamics, over a 

manifold of soil composition, hydroclimatic conditions, and moisture conditions, could allow for 

benchmarking and intercomparison with existing parameter representations.  

 

7. Conclusion 

In this study, we performed a comprehensive review of the influence of antecedent soil 

moisture content on erosion resistance of soils. The goals were to assess the influence of soil 

moisture on soil’s erosion resistance, identify the various mechanisms in play, pinpoint the 

challenges associated with representing the influence of moisture on soil erosion resistance in 

sediment models, and finally to come up with a few recommendations towards developing a 

general parameterization that can be used in soil erosion and sediment models. We found that 

while several studies have highlighted a significant role of antecedent moisture content on soil 

erosion resistance, reported covariation of the two variables were very distinct depending on the 

antecedent wetness of the soil. Dry soils exhibited the lowest resistance to erosion, and thereby 

showed high erodibility, compared to their moist counterparts. This is mainly attributed to a 

range of factors including slaking caused by increase in the pressure and expansion of the 

entrapped air due to rapid wetting, microfissuration, lack of cohesional forces provided by soil 

moisture, increased continuity of soil air in pore spaces, restricted soil particle reorientation to a 

position with low energy and high cohesion, and lack of armoring provided by the runoff water 
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film. Soil’s resistance to erosion generally increases with increasing moisture. However, after the 

moisture content exceeds a threshold, soil resistance was observed to decrease with further 

increasing soil moisture content, and soils become more susceptible to erosion. This optimum 

water content that yields the highest erosion resistance is highly dependent on soil type.  

Soil erosion and sediment yield models, especially event-based and seasonal, should 

incorporate the effects of antecedent soil moisture content on soil loss prediction via not only 

runoff generation but also soil’s resistance. The use of a single soil resistance value in this 

regard, say in form of a constant erodibility variable, may lead to considerable biases in trends 

and magnitudes of predicted erosion. Consideration of dynamic influence of initial soil moisture 

content will therefore result in more robust predictions. However, development of a unifying 

equation to predict erosion resistance based on dynamic sediment properties such as soil 

moisture remains challenging due to (i) disparate definitions of soil’s resistance to erosion (e.g. 

erodibility, cohesion, shear stress, aggregate stability, etc.), and the differences in measurement 

methods, (ii) use of a single constant value for soil erosion resistance that does not allow to 

consider spatially and temporally dynamic soil properties and environmental conditions, (iii) lack 

of a comprehensive understanding and quantification of the factors on which the moisture-

erosion resistance relationship depends on e.g. type and percentage of clay minerals, clay particle 

orientation, curing/aging time, bulk density, organic matter content, soil type and texture/particle 

size, and (iv) lack of understanding about the behavior of soil in natural undisturbed settings. 

Despite these challenges, synthesis of erstwhile studies point to latent opportunities towards 

developing a moisture-explicit erosion resistance relation arising from (i) the coherent trend in 

the relation between soil resistance to erosion vis-a-vis soil moisture reported in literature, (ii) 

equations developed by various studies to quantify the relationship, and (iii) observed trends in 
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watershed, continental and global scales that show dry, bare soil may lead to greater erosion 

during intense rainfall events, whereas initially moist soil produce less sediment. Data from 

previous studies indicate a quadratic relation between the logarithm of normalized soil resistance 

variable vs. soil saturation. Notably, parameters for such a relation were observed to be 

significantly different for silt/loam, clay, and sand. Thus a general parameter set for each of these 

soil types may be used. However, robust parametarization of moisture-driven soil resistance, still 

needs to be derived for each soil type/composition. Development of such a relation across soil 

types could be facilitated by standardization of the definition of soil resistance term and its 

measurement methodology. Irrespective of the functional form used to capture the moisture-

erosion resistance relation, it is high time to start considering the influence of moisture on soil 

erosion resistance in sediment models, especially in light of climate change that is anticipated to 

affect soil moisture regimes and hence soil erosion trends. 

 

Table 2.1. Summary of studies that found an increase in soil resistance to erosion with increasing 
moisture 
 

Reference Indicator of 
erosion 
resistance 

Test 
method 

Soil type Assumptions/condition
s/dependencies 

Key findings 

Allen et al. 
(1999) 

Erodibility 
coefficient K 

Submerged 
jet test 

Alluvial soil 
with < 10% clay 

 For soils tested with < 10% clay, 
antecedent moisture content is 
important in determining soil 
erodibility and erodibility increases 
with decreasing moisture content. 

Auerswald 
(1993) 

Soil loss  Filed erosion 
experiment 
using a 
rainfall 
simulator 
with plot 
size 1.8 m 
by 4.7 m.  

Loessial Dystric 
Eutrochrept top 
horizon (24% 
clay 61% silt, 
4% very fine 
sand and 15% 
sand) 

Rainfall over a period 
of 10 days, 1 h first run, 
and a 0.5 h second run 
after a break of 0.5 h. 
Average rain intensity 
55 mm/h with a kinetic 
energy of 19 J/(m2 mm). 

 

81% of the variation in soil loss 
explained by only moisture and time 
since tillage. Increased stabilization 
of soil against erosion with increasing 
moisture between 10-31%, owing to 
reduced aggregate breakdown due to 
reduced slaking, and the development 
of a water mulch that reduced splash. 
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Bastos et 
al. (2002) 
 
 

Erodibility by 
Inderbitzen 
test, shear 
stress 
represented 
by cohesion 

Inderbitzen 
test, 
conventional 
and suction-
controlled 
direct shear 
tests  

B (lateritic) and 
C (saprolitic) 
horizons of four 
residual soils 
found in 
Southern Brazil 

 Soils where total cohesion decreased 
significantly with rapid moisture 
increase (due to the action of 
superficial flow) were those more 
susceptible to erosion. Rapid wetting 
causes a significant decrease in soil 
shear strength related to pore 
pressure, the destruction of bonding 
between soil particles/aggregates 
triggered by the force of erosion flow, 
and slaking. 

Cernuda et 
al. (1954) 

Aggregate 
stability 

Slaking and 
resistance to 
falling water 
drops  

15 types of soils 
from Puerto 
Rico 

 Low tensions created by capillary 
water films can increase the stability 
of soil aggregates. Slaking and the 
ease of destruction was greatest for 
dry soil.  

Govers and 
Loch 
(1993) 

Sediment 
concentration 

Field erosion 
experiment  

Irving clay soil 
(66% clay 18% 
silt and 12% 
fine sand) and 
Moola clay soil 
(44% clay 18% 
silt 32% fine 
sand and 6% 
coarse sand) of 
Queensland 

Sites with wet soils 
were kept for 4-5 days 
after wetting. 
Discharges of 0.15, 0.4, 
and 1.2 l/s. 

Erosion resistance was greater for 
soils with initially high water content 
than air dried soil due to the 
development of inter-aggregate bonds 
and disruption of the soil aggregates 
by slaking and microfissuration 
during rapid wetting of initially dry 
soil. 

Govers et 
al. (1990) 

Sediment 
concentration 
and soil loss.  

Flume study 
on a 20 m 
long flume 
with a 0.07 
slope using a 
rainfall 
simulator 

Caen silt loam 
with 8.5% sand, 
76.2% silt and 
15.3% clay. 

For wet runs, moisture 
was regulated for at 
least 24 h before the 
experiment. Experiment 
duration was 1 h 30 m 
and rainfall intensity 
was 100mm/h. 

Runoff erosion by high- intensity 
events of medium duration may lead 
to more erosion and sediment when 
the soil is initially dry, regardless of 
their higher infiltration capacity. 
Micro-cracking caused by differential 
expansion of the swelling clay 
components of soil contribute to soil 
shear strength reduction. 

Govers 
(1991) 

Sediment 
concentration 

Flume 
experiment 

Loamy soil 
(17% sand, 69% 
silt and 14% 
clay) 

 Variations in the initial soil moisture 
content is an important factor in 
explaining spatial and temporal 
variations in sediment yield. The 
relationship between moisture and 
soil resistance can be expressed by a 
simple parabolic equation. Erosion 
resistance increases with increasing 
initial moisture content. 

Grissinger 
(1966) 

Rate of 
erosion 

Flume test Grenada silt 
loam mixtures 
with various 
clay minerals 

Erosion resistance-
moisture relationship 
depends on the type and 
amount of clay minerals 
in the mixture, clay 
mineral orientation, 
bulk density, aging time 
after pre-wetting, water 
temperature, particle 
size.  

Erodibility decreased with increased 
antecedent water up to 25% 
antecedent water content.  

Kemper 
and 
Rosenau 
(1984) 

Cohesion 
measured by 
aggregate 
stability and 
moduli of 
rupture 

Wet sieving 
(aggregate 
stability) and 
soil 
cylinders 
(moduli of 
rupture) 

Portneuf silty 
loam from Idaho 
(wind deposited 
over 60% silt 
and < 20% clay) 
and Billings clay 
soil from 

 The rate of cohesion increase after 
disruption was slower in an air-dry 
soil than a moist soil. Slower wetting 
allows more particles to remain 
coherent in the aggregates, due to 
reduced slaking. A substantial portion 
of the cohesion in Portneuf soil is 
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Colorado 
(alluvial) 

created by water phase tension and 
surface tension related to the air-
water interface.  

Larionov et 
al. (2014) 

Erodibility 
calculated as 

𝑘 =
𝑊
𝜌~𝑢F

 

Where 𝑘 is 
soil 
erodibility, W 
is erosion 
rate, 𝜌~ is the 
water density, 
𝑢 is jet 
velocity. 

Vertical jet 
test 

Heavy loamy 
Chernozem soil 
samples 

Soil samples of density 
1.4 g/cm3, at a constant 
jet velocity of 1.42–
1.43 m/s. After wetting, 
the samples were 
exposed in weighing 
cups for 10–12 h. 

Maximum erosion stability was 
achieved at 22% initial water content, 
due to gaining the maximum 
cohesion between aggregates. The 
erosion rate increases with both 
increasing and decreasing initial 
water content. Water acts as a 
lubricant that causes uniform 
distribution of aggregates in soil, 
promoting cohesion between 
aggregates. 
 

Larionov et 
al. (2018) 

Erosion rate 
and 
erodibility 
calculated as 
Larionov et 
al. (2014) 

Flume 
experiment 

Light-clay 
leached 
chernozem 
(Luvic Cherno- 
zem (Pachic))  

Water temperature of 
18–20°C, a mean flow 
velocity of 0.98–1.03 
m/s, and a flow depth of 
1 cm.  

Minimum erodibility detected at a 
moisture content of 30%. Under 
drying, the soil begins to crack, inter-
aggregate bonds diminish, and the 
erodibility increases for soil water 
content from 30 to 9%.  

Le 
Bissonnais 
and Singer 
(1992) 

Sediment 
production 
rate 

Plot 
experiment 
with 
simulated 
rainfall 

Capay silty clay 
loam (fine, 
montmorillonitic
, thermic Typic 
Chromoxerert) 
and Solano silt 
loam (fine-
loamy, mixed, 
thermic Typic 
Natrixeralf) 

Soil was packed to a 
depth of 10 cm over a 
10 cm layer of sand at a 
bulk density of 1.2 
mg/m3. 
Slope 9%. 
rainfall rate 40 mm/h. 

Higher initial soil water content 
decreases aggregate breakdown and 
crust formation, thereby reducing 
erosion due to decreased runoff and 
detachment. Erosion remained 
considerably lower in all the three 
rainfall events in pre-wetted soil than 
air dried soil.  

Le 
Bissonnais 
et al. 
(1989) 

Aggregate 
breakdown 

Plot 
experiment 
with 
simulated 
rainfall 

Orthic luvisol (a 
cultivated silty 
soil) from 
France (19.6 
clay, 72.6 silt, 
7.8 sand).  

Aggregates were pre-
wetted under vacuum, 
so no air-trapping (and 
hence slaking) in pre-
wetted aggregates. 

Aggregate breakdown is determined 
by the way of wetting and initial soil 
water content. Air-dry aggregates 
experience micro-cracking during 
wetting, whereas pre-wetted 
aggregates do not and hence 
aggregate breakdown is very slow.  

Lim (2006) Shear stress 
(critical and 
threshold), 
Erosion rate, 
Slaking 
intesity 
(slaking 
slope)/slaking 
rate 

Rotating 
cylinder test, 
the hole 
erosion test, 
and the 
slaking test 

Non-dispersive 
soils consisting 
of 4 natural 
clays and 3 
commercial clay 
mixtures (30%, 
50% and 70% 
kaolin mixed 
with fine sand) 

 The degree of saturation is important 
determining the erosion behavior of 
non-dispersive unsaturated soils. The 
intensity of slaking increased 3 to 5 
times for a 30% reduction in 
saturation. Lower erodibility with 
increasing saturation. A little change 
in the erosion rate for clay soils of 
>90% saturation.  

Lyles et al. 
(1974) 

Soil 
detachment 
by weight 

Raintower 
wind tunnel 

Silty clay loam 
(sand 8.8%, silt 
60%, clay 
31.2%)   

Bulk density of 1.45 
g/cm3, test clods 12.7 to 
38.0 mm in diameter, 
mulch-covered soil 
clods exposed for 45 
min to wind-driven 
rainfall with an 
intensity of 1.76 in/hr. 

Substantially less soil was removed 
from field-moist clods than from air-
dry clods by raindrops due to slower 
absorption of additional water owing 
to the initial degree of saturation. 
Field-moist aggregates lose their 
resistance to breakdown well in 
advance to becoming air-dry. 

Nachtergae
le and 
Poesen 
(2002) 

Soil 
detachment 
rate 

Flume 
experiment 

Loess-derived 
soils in Belgium 

 Spatial and temporal variability in 
soil erosion is affected by soil 
moisture. From the range of 
gravimetric soil moisture contents, 
spatial and temporal variations in 
detachability over an area can be 
estimated using the relationships 



	 	 49	

developed. Erodibility decreases with 
increasing soil moisture. 

Panabokke 
and Quirk 
(1957) 
 

Water 
stability of 
soil 
aggregates 

Wet sieving 
and shaking 
end-over-
end in a 
cylinder of 
water 

Soil from South 
Australia 
Urrbrae loam 
(red brown 
earth) A and B 
horizons – 
cultivated and 
uncultivated 
Riverina clay 
(Grey soil of 
heavy texture) 
Black clay 
(Hydromorphic 
black earth) 

 The aggregate stability had a major 
effect from the tension of the soil 
water. A decrease in stability with 
decreasing water content, was 
associated with rapid wetting of the 
aggregates and the diminishing of 
cohesion. In clay soils, slaking caused 
by differential swelling is identified 
as responsible for the breakdown of 
aggregates. 

Parker et 
al. (1995) 

Sediment 
concentration 

Flume test A silty sand soil 
composed of 
87% sand, 4% 
silt, and 9% clay 

Bulk density of 1.52 
Mg/m3 flow rate of 0.38 
m3/(m min), flow depth 
15 mm, flume slope 
0.005 m/m. 

Erodibility increased with decreasing 
initial water content between 
moisture contents of 0.200 and 0.125 
kg/kg, due to continuity of soil air in 
pore spaces with decreasing soil 
water content triggering more 
erosion. 

Poesen et 
al. (1999) 
 

Sediment 
concentration 

Flume 
experiment 

Silt loam from 
central Belgium 
containing 2% 
sand, 81% silt, 
17% clay and 
1.3% OM 

 Concentrated flow erosion rates were 
20 - 65% less on initially wet topsoils 
compared to initially air-dry topsoils, 
depending on rock fragment cover. 
Rock fragment cover is less efficient 
in decreasing erosion rates when it is 
air-dry at the beginning than when it 
is moist. Dry soils are more 
detachable due to slaking and 
microcracking. 

Shainberg 
et al. 
(1996) 
 

Rill 
erodibility  

Small 
hydraulic 
flume 

Grumusol clay 
soil (Typic 
Chromoxerert) 

0.5-m-long, 0.046-m-
wide, and 0.12-m- deep 
flume placed at a 5% 
slope, under flow rates 
of 0.04, 0.08, 0.12, 
0.16, 0.2, 0.24, 0.28, 
and 0.32 L/min. 
 
 

Rill erodibility decreases with 
increasing water content. No cohesive 
force development when the soil is 
air-dry. The rate of cohesive force 
development increases with water 
content above a critical water content. 
The formed forces are sufficiently 
strong to resist rill erodibility. The 
critical water content depends on soil 
type. The effect of soil moisture 
content greater than a critical level on 
rill erodibility was less pronounced 
after 24 h of aging. 
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Table 2.2. Summary of studies that found a decrease (or no significant change) in soil erosion 
resistance with increasing moisture 
 

Reference Indicator of 
erosion 
resistance 

Test 
method 

Soil type Assumptions/condition
s/dependencies 

Key findings 

Allen et al. 
(1999) 

Erodibility 
coefficient K 

Submerged 
jet test 

Alluvial soils 
with >10% clay 
(loamy and clay 
soils). 

 There is no significant relationship 
between moisture content and 
erodibility in loamy or clay soils. 
When clay content is > 10% in a soil, 
natural cohesive properties of clay 
becomes dominant and hinder the 
effect of  moisture on soil cohesion. 

Bastos et 
al. (2002) 
 
 

Erodibility by 
Inderbitzen 
test, shear 
stress 
represented 
by cohesion 

Inderbitzen 
test, 
conventional 
and suction-
controlled 
direct shear 
tests  

B (lateritic) and 
C (saprolitic) 
horizons of four 
residual soils 
found in 
Southern Brazil 

 Hydraulic and surface tension forces 
created by water films on the stability 
of soil aggregates is lacking in 
completely saturated soils. 

Cernuda et 
al. (1954) 

Aggregate 
stability 

Slaking and 
resistance to 
falling water 
drops  

15 types of soils 
from Puerto 
Rico 

 Slaking was not completely 
destructive when fine pores were 
limited/absent. Completely saturated 
soil lacks the stability associated with 
hydraulic and surface tension forces. 

Christinsen 
and Das 
(1973) 

Hydraulic 
tractive force 
(shear stress) 

Maintaining 
a steady 
water flow 
through clay 
linings 
inside a 
brass tube  

kaolinite and 
grundite as basic 
clay minerals 
and Ottawa sand 
as an additive 

Water temperature 13-
14°C, Shear stress of 
the flow 0.00496-
0.00571 gm/cm2 

A sharp decrease in erosion with 
increasing compaction moisture 
content, with the exception when soil 
is saturated. Moisture influences a 
decrease in surface roughness that 
reduces erosion. 

Coote et al. 
(1988) 

Aggregate 
stabilty, shear 
strength 

Water-stable 
aggregates 
by wet 
sieving, vane 
shear 
strength 
using a 
hand-held 
torvane. 

Guelph Sandy 
Loam, Colwood 
Silt Loam, Fox 
Silt Loam, 
Haldimand Silt 
Clay, Fox Sand 

Seasonal variation and 
freeze thaw conditions 

Aggregate stability and shear strength 
are negatively correlated with soil 
water content from 16.5 to 47.5%. 

Govers 
(1991) 

Sediment 
concentration 

Flume 
experiment 

Loamy soil 
(17% sand, 69% 
silt and 14% 
clay) 

 For soil moisture contents exceeding 
20%, the erosion resistance was not 
dependent on moisture. 

Grissinger 
(1966) 

Rate of 
erosion 

Flume test Grenada silt 
loam mixtures 
with various 
clay minerals 

Erosion resistance-
moisture relationship 
depends on the type and 
amount of clay minerals 
in the mixture, clay 
mineral orientation, 
bulk density, aging time 
after pre-wetting, water 
temperature, particle 
size.  

Erodibility increased with increased 
antecedent water for unoriented 
coarse kaolinitic-Greneda mixture. 
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Hanson and 
Robinson 
(1993) 

Erodibility 
using a jet 
index 

Submerged 
jet test 

 Water supply under a 
constant head of 0.91 m 
with a nozzle velocity 
of 4.2 m/s. 

The erosion resistance increases 
as the compaction moisture content 
increases. Resistance decreased for 
the saturated sample. 

Kemper 
and 
Rosenau 
(1984) 

Cohesion 
measured by 
aggregate 
stability and 
moduli of 
rupture 

Wet sieving 
(aggregate 
stability) and 
soil 
cylinders 
(moduli of 
rupture) 

Portneuf silty 
loam from Idaho 
(wind deposited 
over 60% silt 
and < 20% clay) 
and Billings clay 
soil from 
Colorado 
(alluvial) 

 Disintegration of the aggregates with 
rapid wetting allows crust formation 
with greater cohesion, when drying. 
The more cohesive Billings soil had 
higher cohesion at low moisture, due 
to the influence of other factors. If air 
pressure is less than the pressure of 
the soil water, moisture does not 
cause cohesion in soils. 

Le 
Bissonnais 
and Singer 
(1992) 

Sediment 
production 
rate 

Plot 
experiment 
with 
simulated 
rainfall 

Capay silty clay 
loam (fine, 
montmorillonitic
, thermic Typic 
Chromoxerert) 
and Solano silt 
loam (fine-
loamy, mixed, 
thermic Typic 
Natrixeralf) 

Soil packed to a depth 
of 10 cm over a 10 cm 
layer of sand at a bulk 
density of 1.2 mg/m3. 
Slope 9%. Rainfall rate 
40 mm/h. 

Soil detachability decreased for the 
initially air-dried soil, during the 
three consecutive rain falls due to 
crust formation. 

Le 
Bissonnais 
et al. 
(1989) 

Aggregate 
breakdown 

Plot 
experiment 
with 
simulated 
rainfall 

Orthic luvisol (a 
cultivated silty 
soil) from 
France (19.6 
clay, 72.6 silt, 
7.8 sand).  

Aggregates were pre-
wetted under vacuum, 
so no air-trapping (and 
hence slaking) in pre-
wetted aggregates. 

Aggregate break down and seal 
formation due to rapid wetting is 
faster in an air-dry soils than 
prewetted soils. 

Lim (2006) Shear stress 
(critical and 
threshold), 
Erosion rate, 
Slaking 
intesity 
(slaking 
slope)/slaking 
rate 

Rotating 
cylinder test, 
the hole 
erosion test, 
and the 
slaking test 

Dispersive clays 
consisting of 4 
natural clays and 
2 commercial 
clay mixtures 
(30% and 50% 
bentonite mixed 
with fine sand) 

 The variations in saturation had 
negligible influence on the erosion 
behavior of dispersive soils. 

Luk and 
Hamilton 
(1986) 

Soil loss, 
Soil shear 
strength 

Field plot 
experiment 
with 
artificial 
rainfall 
using a 
hand-held 
picton 
torvane 
(field) and 
mechanized 
torvane (lab) 

Two Gray- 
Brown Luvisol 
soils in southern 
Ontario, the 
Font loam and 
the Guelph silt 
loam 

Artificial rainfall at 50 
mm/h. Experimental 
plots of 7.8 m2 

Soil loss is mainly associated with 
moisture content. If the full range of 
soil moisture is considered, soil loss 
may vary by as much as 800 times. 
Soil loss increased and aggregate 
stability decreased with soil moisture. 

Panabokke 
and Quirk 
(1957) 
 

Water 
stability of 
soil 
aggregates 

Wet sieving 
and shaking 
end-over-
end in a 
cylinder of 
water 

Soil from South 
Australia 
Urrbrae loam 
(red brown 
earth) A and B 
horizons – 
cultivated and 
uncultivated 
Riverina clay 
(Grey soil of 
heavy texture) 

 For soils drier than pF 5.5, had higher 
aggregation due to entrapped air 
preventing water from entering pore 
spaces. 
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Black clay 
(Hydromorphic 
black earth) 

Shainberg 
et al. 
(1996) 
 

Rill 
erodibility 

Small 
hydraulic 
flume 

A loamy loess 
(Calcic 
Haploxeralf), 
and a loamy 
sand hamra 
(Typic 
Rhodoxeralf) 

0.5-m-long, 0.046-m-
wide, and 0.12-m- deep 
flume placed at a 5% 
slope, under flow rates 
of 0.04, 0.08, 0.12, 
0.16, 0.2, 0.24, 0.28, 
and 0.32 L/min 
 
 

In the loamy sand hamra, an increase 
in water content increases rill 
erodibility of the soil. Negligible 
influence of water content on rill 
erodibility in the loamy loess. 
erodibility was less pronounced after 
24 h of aging. 

Wan and 
Fell (2004) 

Rate of 
erosion, 
critical shear 
stress 

Slot erosion 
test and the 
hole erosion 
test 

13 soil types  The erosion resistance of a soil is 
strongly determined by the saturation 
at soil compaction. Saturated soils do 
not have an influence on erosion 
resistance. 
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CHAPTER 3 

MODELING AND ANALYSIS OF SEDIMENT TRAPPING EFFICIENCY OF LARGE 
DAMS USING REMOTE SENSING 

 
 

Abstract 

Quantifying the role of sediment trapping by dams is important due to its control on 

fluvial and coastal geomorphology, aquatic ecology, water quality, and human water uses. 

Sediment trapping behind dams is a major source of bias in large-scale hydro-geomorphic 

models, hindering robust analyses of anthropogenic influences on sediment fluxes in freshwater 

and coastal systems. This study focuses on developing a new reservoir trapping efficiency (Te) 

parameter to account for the impacts of dams in hydrological models. This goal was achieved by 

harnessing a novel remote sensing data product which offers high-resolution and spatially 

continuous maps of suspended sediment concentration across the Contiguous United States 

(CONUS). Validation of remote sensing-derived surface sediment fluxes against USGS depth-

averaged sediment fluxes showed that this remote sensing dataset can be used to calculate Te 

with high accuracy (R2 = 0.98). Te calculated for 222 dams across the CONUS, using incoming 

and outgoing sediment fluxes from their reservoirs, range from 0.13% to 98.3% with a mean of 

45.8%. Contrary to the previous understanding that large reservoirs have larger Te, remote 

sensing data shows that large reservoirs can have a wide range of Te values. A suite of 22 

explanatory variables were used to develop an empirical Te model. The strongest model predicts 

Te using four variables: incoming sediment flux, outgoing water discharge, reservoir length, and
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reservoir storage. A global model was also developed using explanatory variables obtained from 

a global dam database.  

  

1. Introduction 

The construction of dams and impoundments for hydropower generation, flood control, 

irrigation, and water supply is among the greatest stressors to the connectivity and functionality 

of world’s rivers (Grill et al., 2019; Verstraeten and Poesen, 2000; Vörösmarty et al., 2003; Zarfl 

et al., 2015). Currently, ~58,000 large dams (heights greater than 15 m) exist in the world with 

an additional ~3,700 dams that are either planned or under construction (Best and Darby, 2020; 

Mulligan et al., 2020). Apart from retaining a large amount of sediment, dams alter downstream 

flow regimes affecting sediment carrying capacities which can increase bank erosion and 

riverbed incision driven by sediment starvation (Best, 2019; Kondolf et al., 2014b; Schmidt and 

Wilcock, 2008; Williams and Wolman, 1984). These alterations also lead to coarsening of the 

substrate, changes in channel planform, and reductions in sediment-associated nutrients in 

downstream areas which could result in collapsed ecosystem functioning and impacts on the 

fisheries industry (Brandt, 2000; Syvitski, 2003; Wohl and Rathburn, 2003). Construction of 

dams without assessing their potential consequences has led to degraded floodplain and coastal 

environments worldwide (Latrubesse et al., 2017). In addition, reservoir sedimentation which 

affects the utility and sustainability of reservoirs, is mainly governed by the trapping efficiency 

of the dam impoundment (Jothiprakash and Vaibhav, 2008).  

Dams have caused a major reduction in the sediment loads in many of the world’s rivers 

(Haddeland et al., 2014; Wei et al., 2021; Wu et al., 2020). The Huang He River in China, which 

once had the highest river sediment flux in the world, now transport only ~50% of its natural 
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sediment flux to the coast, in large part due to the numerous small and large dams constructed 

throughout its watercourse (Wu et al., 2020). The construction of the Hoover dam caused a large 

reduction of sediment flux in the Colorado River from about 125 MT/y to 3 MT/y (Williams and 

Wolman, 1984). Another widely cited example is the Aswan High Dam on the Nile River which 

reduced sediment load from about 100 MT/y to nearly zero, causing a rapid shrinking of the Nile 

River Delta (Chakrapani, 2005; Walling, 2012). It has been estimated that approximately 25% of 

the global sediment flux is trapped in large reservoirs (Syvitski and Milliman, 2007, Syvitski et 

al., 2005; Syvitski et al., 2022; Vörösmarty et al., 2003).  

Accurate estimation of reservoir sediment trapping is vital for a variety of applications 

such as, predicting river sediment transport (Cohen et al., 2014), quantifying the global sediment 

delivery into the ocean (Syvitski and Milliman, 2007), analysis of coastal/marine and deltaic 

environments (Syvitski et al., 2005), understanding anthropogenic influences on riverine fluxes 

(Wu et al., 2020), simulating future or theoretical change scenarios (Dunn et al., 2019), 

evaluating ecological impacts (Kummu & Varis, 2007), and informing dam operations 

(Espinosa-Villegas and Schnoor, 2009). Representation of sediment trapping by dams is 

currently a major source of bias in continental- and global-scale hydro-geomorphic modeling 

frameworks (e.g., WBMsed model; Cohen et al., 2013).  

Several methods have been developed over the years to estimate reservoir trapping 

efficiency (e.g., Borland, 1971; Brown, 1943; Brune, 1953; Chen, 1975; Churchill, 1948; 

Heinemann, 1984; Verstraeten and Poesen, 2000; Vörösmarty et al., 2003). Likely the most 

widely used is Brune (1953) method where reservoir capacity to inflow ratio is considered. The 

Brune method was developed using 40 normally ponded (i.e., conventional reservoirs entirely 

filled with water and have their outlet at the top of the embankment) and 4 other types of 
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reservoirs. It was later modified by USDA-SCS (1983) to include particle size information. The 

Churchill (1948) approach calculates a ‘sedimentation index’ for a reservoir using water 

residence time and flow velocity. It is applicable for reservoir types such as desilting and semi-

dry which are different from normally ponded reservoirs. The Chen (1975) method predicts 

trapping for different particle size classes using flow velocity and particle size data. Rausch and 

Heinemann (1975) developed an equation that predicts reservoir trapping using reservoir 

detention time, peak inflow rate (in place of inflow sediment particle size), storm runoff volume, 

sediment yield from storm, reservoir storage capacity, and drainage area. Their regression 

equation was developed using data from only three reservoirs in the Missouri River for 

individual storms and was not recommended for reservoirs with different characteristics.  

Many large-scale sediment transport models currently rely on the approach of 

Vörösmarty et al. (2003) to calculate trapping as a function of local residence time change, an 

approximation of the Brune (1953) method (e.g. BQART: Syvitski and Milliman, 2007; 

WBMsed: Cohen et al., 2013; MOSART-sediment: Li et al., 2022; HydroTrend v3.0: Kettner 

and Syvitski, 2008; Grill et al., 2019). This method is convenient to use in large-scale models 

due to its simplicity and low input data requirement. These simplifications, however, can lead to 

increased bias and uncertainty. These methods were shown to significantly overestimated or 

underestimated trapping efficiency in reservoirs (e.g., Espinosa-Villegas and Schnoor, 2009; 

Lewis et al., 2013). However, to our knowledge, no large-scale comparison between measured 

and estimated sediment trapping efficiencies in individual reservoirs and dams has been reported 

in the literature. Calculation of trapping efficiency using in situ measurements requires long-term 

observations of sediment fluxes both upstream and downstream of a reservoir. Gauging stations 
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for calculating sediment trapping are typically located far upstream and/or downstream of dams, 

which can introduce considerable errors to the trapping efficiency calculations (Brune, 1953).  

Emerging remote sensing methodologies and datasets of fluvial sediment (Dethier et al., 

2020; Gardner et al., 2023; Overeem et al., 2017; Yang et al., 2022) provide a unique opportunity 

to quantify, analyze, and model sediment trapping and its downstream impacts at continental and 

global scales. Remote sensing can also provide temporal dynamics, which is important as 

sediment trapping and its downstream impacts can vary over time (Rausch and Heinemann, 

1975). Longitudinal sediment profiles developed using remote sensing data also provide 

opportunities to study spatial and temporal recovery patterns of the river system downstream of a 

dam. Although remote sensing sediment data can have uncertainties associated with atmospheric 

corrections, algorithm development, etc., their greater spatial and temporal coverage offer an 

unparalleled opportunity to be used in large-scale applications (Dethier et al., 2020).    

This paper is focused on the development of conceptual understanding and 

parameterization of sediment trapping efficiency of large dams and its impacts on sediment 

dynamics downstream of dams. A novel reservoir trapping efficiency empirical model is 

developed using a new remote sensing dataset (Gardner et al., 2022, 2023) that offers high-

resolution and spatially continuous suspended sediment concentration (SSC) data across the 

Contiguous United States (CONUS). This is the first dataset of its kind that enables the 

observation and modeling of fluvial suspended sediment dynamics at a continental scale, a 

transformative capability considering the scarcity in sediment gauging. Suspended sediment 

loads entering the reservoir and leaving its dam are used to calculate sediment trapping in 222 

reservoirs. These reservoir trapping data are used to develop a new reservoir trapping efficiency 

empirical model using widely available fluvial, environmental, and dam attributes. This analysis 
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provides insights into the factors controlling the magnitude of suspended sediment trapping by 

dams at large spatial scales. In order to develop these quantitative relations, we employ statistical 

approaches such as multiple regression as well as machine learning techniques. We developed an 

additional model based on a global dataset of dams to extend our estimation of sediment trapping 

globally, providing a unique attribute for future analyses and modeling efforts. We also discuss 

the changes in suspended sediment loads along rivers using longitudinal sediment profiles 

extracted from the remote sensing dataset.  

 

2. Methodology 

2.1 Dam selection and trapping efficiency calculation 

The remote sensing sediment dataset used in this study was developed by Gardner et al. 

(2022, 2023), using Landsat 5, 7, and 8 processed in Google Earth Engine (GEE) and Machine 

Learning to convert surface reflectance into SSC, generating spatially continuous maps of SSC 

along 108,000 kilometers of large rivers across the CONUS. This approach provides SSC (mg/L) 

data linked to the National Hydrography Dataset (NHDplusV2) river network (McKay et al., 

2015). The machine learning algorithm was trained using >21,000 coincident field and remote 

sensing observations and validated using >2,000 observations (Ross et al., 2019). While the 

algorithm has equal or higher accuracy (Root Mean Square Error (RMSE) of 29 mg/L, Mean 

Absolute Error (MAE) of 12 mg/L) than previous local Landsat-based models, there are many 

limitations of remotely sensed SSC such as only representing surface SSC down to one optical 

depth. In addition, these remote sensing data are spatially averaged to approximately 2 km river 

lengths unlike point measurements at river gauges. The SSC algorithm tends to overestimate low 

concentrations (0 to 10 mg/L) and underestimate very high concentrations (>3,000 mg/L). For 
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this study, 32% of the river reaches used to calculate Te were < 10 mg/L (smallest value 3.34 

mg/L) and none had SSC values >3,000 mg/L. Given the consistent long-term record of spatially 

continuous SSC observations across US rivers, this dataset provides an unprecedented 

opportunity to calculate and understand Te. For more information about this data product and its 

validation, readers are referred to Gardner et al. (2022) and Gardner et al. (2023).  

For this study, we calculated long-term averaged suspended sediment flux (kg/s) for each 

NHDPlus river reach by multiplying its remote sensing-derived long-term mean (1984-2018) 

SSC (mg/L) and NHDplus mean annual discharge (m3/s). We used suspended sediment flux to 

calculate trapping efficiency instead of SSC to mitigate issues of water extraction and loss in 

reservoirs due to irrigation and evaporation, which can skew the calculation. For example, low 

sediment loads can be indicated as high sediment concentrations if a significant amount of water 

is extracted and removed from the system. Therefore, it is important to use flux values when 

calculating reservoir trapping even if it introduces an additional source of bias from the NHDplus 

discharge estimates.  

We conducted a validation of the calculated suspended sediment flux values, and the 

NHDplus discharge values used to calculate them, against USGS gauge sediment flux and water 

discharge data, respectively. The main objective of the validation was to find how well 

suspended sediment flux calculated by remote sensing-derived surface SSC represents the total, 

depth-integrated, suspended sediment load of the river. The validation was conducted for 36 

USGS gauge sites where daily suspended sediment discharge measurements were available over 

the same period of time, and for sites located on the river network for which remote sensing data 

were available (Supplementary Table S3.1). However, it should be noted that the temporally-

averaged USGS sediment flux values for some gauging stations do not match the entire period of 
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the remote sensing data, due to missing values or discontinuation of the gauging station. Since 

we compared long-term average sediment values, it was reasonable to use these stations. Based 

on this validation of suspended sediment flux, we introduced a simple adjustment factor to match 

the remote sensing-calculated surface suspended sediment fluxes to depth-averaged suspended 

sediment fluxes.    

For the CONUS-scale analysis, we used the National Inventory of Dams (NID) dataset, 

published by the U.S. Army Corps of Engineers (https://nid.sec.usace.army.mil/ords/). The NID 

consists of more than 91,000 dams with attributes such as dam storage, dam height, dam length, 

drainage area, surface area of the impoundment, dam history, inspection, and hazard potential. 

However, this dataset includes many dams such as dikes, saddle dams, dams on small ponds 

located outside the river network, dams that do not form impoundments, and sometimes multiple 

dams per reservoir (Renwick et al., 2005). Therefore, we had to carefully choose the main dam 

located on the river network, that releases water and sediment to the river from its reservoir. We 

first conducted an initial filtering to extract the dams located close to the river network for which 

remote sensing sediment data were available, and have valid (non-zero) values for reservoir 

storage, drainage area, dam height, and dam length. Then through a meticulous manual 

procedure involving ArcGIS base maps, Google Earth, USA detailed water bodies layer package 

(ESRI, 2021), Global Reservoir and Dam (GRanD) Database (Lehner et al., 2011), and 

NHDWaterbody layer, the locations of dams and reservoirs that correspond to the river network 

with remote sensing data were extracted. Reservoirs with storage capacities < 0.01 km3 and dams 

that that do not form visible impoundments were removed. This resulted in 317 dams in total that 

are distributed across the CONUS.  
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Sediment trapping efficiency (Te; %) for individual dams was calculated as:  

 

   𝑇𝑒 = ��_�����_���
��_��

∗ 100     (1) 

 

where, 𝑄h_&M is the suspended sediment flux entering the reservoir (kg/s), and 𝑄h_��K is the 

suspended sediment flux immediately downstream of the dam. As demonstrated in Figure 3.1, 

reservoirs typically drain multiple streams in addition to the main stem of the river. Fluxes from 

these streams and rivers needs to be included in the calculation of 𝑄h_&M (Condé et al., 2019). We 

found that if 𝑄h_&M does not account for sediment loads from all the incoming river reaches, it can 

lead to significant underestimates of the total sediment load entering a reservoir. Ziegler and 

Nisbet (1995) also calculated sediment trapping efficiencies using sediment loads from both the 

main stem and tributaries. According to their estimates, 32.7% of the inflow sediment load in the 

Watts Bar reservoir on the Tennessee river was from other tributaries. In addition, Liu et al. 

(2022) found that sediment from smaller tributaries in the Three Gorges Reservoir carried 

approximately 10.8% of the total incoming sediment. For most reservoirs, however, remotely 

sensed suspended sediment data were not available for all draining streams given their small size 

(Figure 3.1). We estimated the sediment flux contribution of these reaches to each reservoir by 

multiplying their total discharge (from NHDplus) by the average SSC of the river reaches 

entering the reservoir with remote sensing data. This assumes similarity in average SSC among 

contributing reaches to each reservoir. We have found that Te calculation was not very sensitive 

to other scaling approaches given the dominance of the river main stem sediment flux on the 

calculation.  
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A potential problem associated with calculating Te using remotely sensed upstream and 

downstream sediment loads is that 𝑄h_��K may capture erosion taking place in reaches 

immediately downstream of the dam (Kummu et al., 2010; Williams and Wolman, 1984). The 

river reaches of the modified NHDplus network are several kilometers long (Figure 3.1). Along 

this length, sediment replenishment through riverbed and bank erosion, small tributary input and 

deposition can impact sediment concentration (Brandt, 2000). Using the NHDplus reach 

immediately downstream of a dam to capture its discharged sediment flux is therefore prone to 

overestimation, leading to underestimation of the calculated Te. To mitigate this issue, we used 

the sediment load from the river reach immediately upstream of the dam (the most downstream 

of the reservoir) to get 𝑄h_��K, assuming that the sediment load of this reach is representative of 

the amount released by the dam. This is further illustrated by the longitudinal sediment profiles 

of rivers in section 3.2. which shows the pattern of gradual sediment deposition within the 

reservoir. According to these profiles, the sediment load of the most downstream reach within 

the reservoir is better representative of the sediment load retained by the reservoir. From our 

experimentation with 𝑄h_��K estimation we found that this approach yields Te values that better 

correspond to published estimates.  
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Figure 3.1. Figure illustrating the incoming river reaches into the reservoir.  

 

Out of the 317 dams for which Te was calculated using Eq. 1, 75 yielded Te <0% 

indicating that these dams do not trap any sediment. This is possible for dams where no sediment 

is retained in the impoundment (Espinosa-Villegas and Schnoor, 2009). Other possible reasons 

for a <0% Te may include (i) underestimation of sediment load in incoming river reaches that 

does not have remote sensing sediment data, (ii) bias in remote sensing sediment data specially 

for low SSC values, and (iii) in a few instances, the NHDplus river reach used to get 𝑄h_��K 

captures areas downstream of the dam.  

Further investigation into the 75 dams that yielded Te <0% revealed that many of these 

dams have a primary purpose of navigation and hydropower generation. Conversely, dams built 

with the main purpose of irrigation, water supply, or flood risk reduction had only a few dams 

with zero Te values. It should be noted that many dams have multiple uses. These results are 
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reasonable as navigational dams or lock and dam structures are usually designed to release water, 

and thus sediment, downstream (Peteuil, 2012). Dams built for hydroelectricity, particularly run-

of-river hydroelectric dams have little or no water storage and thus natural seasonal river flows 

are less obstructed (Brismar, 2002). Taking this distinction into consideration, all the Lock and 

Dams in the dataset were considered as having zero Te. However, no information was available 

in the NID dataset to distinguish run-of-river hydroelectric dams from conventional hydropower 

dams with impoundments. Therefore, all the hydropower dams with positive Te values were 

included in the dataset. After removing dams with a <0% Te and navigational dams, 222 dams 

were available for use in the analysis (Figure 3.2).  

 

 
Figure 3.2. Map of the locations of 222 dams and reservoirs used in the analysis along with the 
river sediment fluxes calculated using the remote sensing data. 
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2.2 CONUS Te Model Development 

Several, widely available, environmental, fluvial, and dam-related variables were 

collected to develop a CONUS-wide empirical Te model (Table 3.1). Reservoir length along its 

longest part was calculated along the NHDplus river network, using the NHDplus reservoir 

polygons. The relationship between these variables and Te was analyzed using multiple 

regression and machine learning. We used machine learning techniques, such as Random Forest 

Regression and Artificial Neural Network (e.g., Multi-layer Perceptron) models, with an 80% 

and 20% split of data for training and validation, respectively. Sensitivity and variable selection 

analyses (e.g., Variance Inflation Factor) were conducted to identify the key attributes that 

contain the largest variance of the data. 

Table 3.1. Explanatory variables tested for developing the Te parameter 

Variable Symbols Data type Data source 
Incoming sediment flux Qs_in Line  Gardner et al. (2022) 
Incoming discharge Q_in Line  NHDplus V21 
Outgoing discharge Q_out Line (NHDplus), point 

(GRanD) 
NHDplus V21, GRanD 

Dam length D_Length Point  NID, GRanD 
Dam height H Point  NID, GRanD 
Reservoir storage S Point  NID, GRanD 
Reservoir surface area SA Point  NID, GRanD 
Drainage area D Point  NID, GRanD 
Slope Slp Line  Lin et al. (2020) 
Elevation Elev Line (Lin), point 

(GRanD) 
Lin et al. (2020), GRanD 

% Sand Snd Line  Lin et al. (2020) 
% Silt Slt Line  Lin et al. (2020) 
% Clay Cly Line  Lin et al. (2020) 
Sinuosity Sin Line  Lin et al. (2020) 
Aridity Index AI Raster (~1 km) Lin et al. (2020), Trabucco and 

Zomer (2019) 
Leaf Area Index LAI Line  Lin et al. (2020) 
Sum of soil erosion from 
within the river reach 
catchment 

E Line  Grill et al. (2019) 
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2-yr return period flood Q2 Line  Lin et al. (2020) 
Dam age A Point  NID, GRanD 
Lake length L Line  Grill et al. (2019) 
Reservoir Depth Depth Point  GRanD 
Water temperature T Line Syvitski et al. (2019) 

 

 
2.3 Calculation and Analysis of a Global Te Dataset 

A global empirical Te model was developed using dam attributes from the GRanD 

database (Lehner et al., 2011). A dataset of 264 observed Te values was used to develop the 

global Te model. The dataset includes the 222 CONUS dams, observed Te calculated for 4 dams 

in the Amazon Basin using a similar remote sensing dataset (Narayanan, 2022), literature-

reported Te for 36 dams in China (Hu et al., 2009; Tan et al., 2019), the Bhakra Dam in India 

(Jothiprakash and Vaibhav, 2008; Sharma et al., 2018), and the Aswan High Dam in Egypt 

(Biswas and Tortajada, 2012). Some of the missing explanatory variable data for these 264 dams 

in GRanD were substituted with data from the NID dataset, the GeoDAR global reservoir and 

dam dataset (Wang et al., 2021), and World Register of Dams (WRD) maintained by the 

International Commission on Large Dams (ICOLD; https://www.icold-cigb.org). Reservoir 

lengths were calculated using an automated process using the Grill et al. (2019) river network 

and GRanD reservoir polygons. The developed global Te model was then applied for the GRanD 

dataset, with a total of 6823 dams which included all the needed attributes. This dataset is 

envisioned to provide a Te parameter for large-scale hydrological and geomorphic modeling 

frameworks.  
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3. Results and Discussion 

3.1 Evaluation of the Remote Sensing Sediment Data 

A limitation of remote sensing of sediment is that it only captures sediment concentration 

for the top layer of the river water column (Condé et al., 2019). Existing theoretical methods to 

obtain depth-averaged sediment concentration profiles such as the Rouse profile require data on 

water depth, sediment settling velocity, shear velocity at different water depths, and other 

coefficients (Laguionie et al., 2007) which are not readily available. Blanchard et al. (2011) 

reported that suspended sediment concentration varied at different depths among different sites 

they measured. A universal method to estimate sediment concentration profiles using surface 

sediment fluxes has not been proposed. We conducted a comparison between in situ measured 

and remote sensing-calculated sediment fluxes for 36 USGS gauging stations. It is important to 

note that the USGS measurements of discharge and suspended sediment are point measurements 

at gauging stations, whereas NHDplus discharge and remote sensing sediment data are average 

values over several kilometers of river length. The results show that the remote sensing sediment 

flux is consistently underestimated (Figure 3.3b). 
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A comparison between NHDplus discharge and USGS measured discharge shows that 

the discharge values correspond nearly perfectly to the in-situ measurements and, thus, can be 

considered as reliable (Figure 3.3a). This may also be attributed to the fact that NHDplus mean 

annual discharge is gauge adjusted based on the observed flow (Moore et al., 2019). NHDplus is, 

however, widely used in hydrological studies as a reliable source of mean annual discharge, so 

we are quite confident in these values throughout the CONUS. Based on these results, we can 

deduce that the source of underestimation of the remote sensing sediment flux can be attributed 

Figure 3.3. Comparison of (a) NHDplus discharge with 

USGS measured discharge, (b) suspended sediment flux 

calculated using remote sensing data (and NHDplus 

discharge) with USGS measured suspended sediment 

flux, and (c) suspended sediment flux calculated using 

remote sensing data (and NHDplus discharge) with 

USGS measured suspended sediment flux, after 

incorporating the adjustment factor of 4.454. n=36 for all 

graphs. R2 = Coefficient of Determination, RMSE = Root 

Mean Square Error, NSE = Nash Sutcliffe Efficiency, 

KGE = Kling Gupta Efficiency. 
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to its derivation from surface sediment concentration (Dethier et al., 2020; Markert et al., 2018). 

It may also be attributed to remote sensing data missing high flow events which carry a high 

proportion of a river’s total sediment load, due to the low temporal resolution of Landsat imagery 

and cloud cover during these events. We found that, a simple adjustment factor of 4.45 yields the 

strongest alignment with the 1:1 line, yielding the lowest sum of residuals and improved model 

performance statistics (RMSE, NSE, and KGE), so that sediment flux calculations are 

representative of the depth-averaged sediment flux in the in-situ observations (Figure 3.3c). This 

result shows that remote sensing-derived suspended sediment fluxes can be used to calculate Te 

with high accuracy using a simple adjustment factor. The efficiency of the uniform adjustment 

factor is surprising given the diversity of the gauge locations, the range of sediment flux values 

(3 orders of magnitude), and the known complexity in the fluvial sediment-depth relationship. 

The strong linear fit in figure 3.3c implies that average surface suspended sediment flux is 

uniformly 4.45 times smaller than depth-averaged flux across a wide range of rivers over the 

CONUS. This finding merits further investigation using a wider geographical range. A smarter 

adjustment factor may be warranted to reduce the relatively high scatter observed for smaller 

values of sediment flux. 

 

3.2 Sediment Dynamics Along Longitudinal Profiles 

The Missouri River is a good case study for examining the changes in sediment dynamics 

along longitudinal profiles due to obstruction by a diverse set of large dams (Figure 3.4). The 

largest of these dams in terms of reservoir capacity include the Garrison Dam forming Lake 

Sakakawea, Oahe Lake and Dam, and Fort Peck Lake and Dam, with reservoir storage capacities 

of 32.1 km3, 29.1 km3, and 23.6 km3, respectively. Both the sediment concentration and flux 
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generally increase as the river flows downstream. The trends in sediment concentration and flux 

are generally similar. A rapid decrease in the sediment load (both concentration and flux) is 

observed within reservoirs (highlighted color sections in Figure 3.4b). This shows the deposition 

of sediment in the reservoir due to reduced flow velocity (Verstraeten and Poesen, 2000). Near 

the headwaters of the Missouri River, sediment flux increases downstream at a rate of 0.05 

kg/s/km, and then a steep decrease in sediment is observed once it reaches the first set of 

relatively small cascading dams (collectively account for 3.1 km3 storage capacity). The 

sediment load increases without obstructions from large dams for about 493 km downstream at a 

rate of 0.27 kg/s/km (180 to 675 km segment in Figure 3.4b). Once the river enters Fort Peck 

Lake, sediment load rapidly decreases at a rate of -0.52 kg/s/km due to deposition in the 

reservoir. Fort Peck Dam traps 94% of its incoming sediment flux as calculated by the remote 

sensing dataset. Sediment loads increase rapidly immediately after the Fort Peck dam due to the 

high sediment-yielding Milk River confluence (Figure 3.5). 
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Figure 3.4. Longitudinal profile of sediment dynamics in the Missouri river. (a) Map of the 
Missouri River and its dams. (b) Trend in sediment concentration and flux along the Missouri 
River. The red dots show the dam locations, whereas the blue and grey lines show the sediment 
concentration (mg/L) and adjusted sediment flux (kg/s) obtained from the remote sensing data, 
respectively. Pre-dam construction and current observed long-term average sediment 
concentrations (blue squares) and fluxes (grey squares) were calculated from USGS gauge sites 
where data are available. The colored areas indicate the extent of reservoirs corresponding to the 
dams. Note that vertical axes are converted to log scale to enhance visualization. 
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Figure 3.5. The Milk River joining the Missouri river immediately after the Fort Peck dam, 
contributing to a sudden increase in downstream sediment load. 5(b) shows the longitudinal 
sediment profile of the river segment with the colored bar showing the reservoir extent. Blue and 
grey lines show the sediment concentration (mg/L) and adjusted sediment flux (kg/s) obtained 
from the remote sensing data, respectively. 

 

The next large dam along the Missouri profile, Garrison (km 1,500 in Figure 3.4b), traps 

93.4% of its incoming sediment flux. The pattern of decrease in sediment within the reservoir 

length and a sudden increase in sediment after the dam can also be clearly observed at this 

location, as well as Oahe, Big Bend, and Fort Randall dams and reservoirs. The increase in 

sediment after the dam at Oahe, Big Bend, and Fort Randall dams are gradual increases within a 

short distance (as opposed to the sudden increase after Fort Peck) and can likely be attributed to 

both instream erosion and sediment influx from smaller tributaries. The spike in sediment flux 

and concentration at km 2,192 within Lake Francis Case (formed by the Fort Randall Dam) is 

due to the White River joining the Missouri river. The increase in sediment between Fort Randall 

(b) (a) 
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dam and Lewis and Clark Lake (formed by Gavins Point dam) at 2,374 km downstream point is 

due to the Niobrara River joining the Missouri River. Gavins Point dam also shows a similar 

pattern of sediment trapping and a gradual increase downstream. Along its most downstream 

segment (~2,400 – 3,750 km), the Missouri River flows without dam obstructions until it joins 

the Mississippi River, gaining sediment along the way, with considerable contribution from 

tributaries. The rate of increase in sediment flux along this segment of Missouri is 1.32 kg/s/km.     

USGS gauge sediment concentration and flux data prior to dam construction were 

obtained for two locations along the Missouri River: Missouri River at Bismarck, ND at km 

1,612 (USGS gauge number: 06342500) and Missouri River at Omaha, NE at km 2,741 (USGS 

gauge number: 06610000). The latter also provides post dam-construction measurements. For the 

Bismarck station, daily sediment data were available only for the year 1946, which was used to 

calculate the average sediment loads prior to dam construction. For the Omaha station, average 

prior-to-dam sediment concentration and flux were calculated using daily data for the period 

between 1939 – 1951, while contemporary sediment concentration and flux were calculated 

using daily data for the period between 1991 – 2019 (excluding 2004 – 2007 due to missing 

data). The contemporary sediment flux from USGS data at Omaha station (477 kg/s) compares 

reasonably well with the adjusted sediment flux from remote sensing data for this location (294 

kg/s), considering the difference in the temporal range. The difference between the prior-to-dam 

and contemporary sediment fluxes observed at the gauge site is over an order of magnitude at the 

Omaha station (4694 kg/s to 477 kg/s) and two orders of magnitude at the Bismarck station 

(1587 kg/s to 49 kg/s).  

The Colorado River (Figure 3.6) is well known for its near-zero sediment flux to the 

ocean due to the high degree of sediment trapping by dams and water extractions. Sediment load 
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increases at an average rate of 1.07 kg/s/km from the headwaters in Rocky Mountains National 

Park, CO, until km 620, downstream of which sediment load decrease, before entering the Glen 

Canyon reservoir (left-most highlighted section in Figure 3.6c). Glen Canyon Dam traps on 

average 95.8% of the incoming sediment load, resulting in a near-zero load downstream. Until 

the river enters Lake Mead (formed by the Hoover Dam), sediment flux generally increases at an 

average rate of 0.84 kg/s/km. The areas with missing (and highly fluctuating) remote sensing-

captured SSC before the start of Lake Powell (formed by the Glen Canyon Dam), as well as in 

river reaches between Glen Canyon dam and Lake Mead, are the portions of the Colorado River 

that flow through the Canyonlands National Park, and the Grand Canyon, respectively. These 

more confined segments of the river pose challenges for remote sensing techniques due to (i) 

generally very narrow river widths, (ii) steep canyons creating hill shadows, (iii) in areas where 

rapids/white water areas are interspersed with slow water flows, rapids may be indicated as high 

SSC, and (iv) a number of small tributaries along this part of the river that deliver considerable 

amount of sediment to the Colorado River potentially contributing to the high variability. 

The Hoover Dam traps 78.7% of the incoming sediment load, and the dams that follow 

such as Davis, Parker, Palo Verde diversion, etc. keep the sediment load from recovering. The 

Morelos diversion dam, which is the last dam on the Colorado River, diverts a large portion of its 

water for irrigating highly developed croplands in the Mexicali Valley, Mexico. The Colorado 

River has a very low water discharge from this point onwards (Figure 3.6b). Although the 

NHDplus river network and therefore sediment data ends at the Morelos diversion dam shortly 

before reaching the US-Mexico border, the river extends further until it reaches the ocean. This 

longitudinal river profile shows the dynamics leading to a very low sediment flux from the 

Colorado River to the ocean. 
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Figure 3.6. Longitudinal profile of sediment dynamics in the Colorado river. (a) Map of the 
Colorado River and its dams. (b) Colorado River after the Morelos Diversion Dam with very low 
discharge. (c) Mean sediment concentration and flux along the Colorado River. The red dots 
show the dam locations, whereas the blue and grey lines show the sediment concentration (mg/L) 
and adjusted sediment flux (kg/s) obtained from the remote sensing data, respectively. The 
colored areas indicate the extent of reservoirs corresponding to the dams.	
 
 

Similar patterns in sediment trapping and downstream recovery are observed in other 

rivers (e.g., Figure 3.7(c) the Catawba and Wateree Rivers, Figure 3.7(d) the Tennessee River). 

In the Catawba and Wateree Rivers, clear decreases in sediment concentrations are observed at 

reservoir locations, however, this trend is not very prominent in sediment flux. This may be due 

to the gradual increase in discharge throughout the water course that alleviated the changes in 

sediment concentration until the Wylie dam (km 206). Sediment concentration and flux both 

(a) 

(c) 

(b) 
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increase for about 28 km downstream of Wylie dam at a rate of 0.33 kg/s/km until the next set of 

cascading dams trap a large amount of sediment. Following these dams, a gain in sediment is 

observed until the Wateree River and Congaree River confluence, at a rate of 0.14 kg/s/km. In 

the Tennessee River (Figure 3.7d), although sediment concentration shows decreases at reservoir 

locations, sediment fluxes show a general increasing trend until the Kentucky Lake (km 846), 

despite multiple dam obstructions. The spikes in sediment within the lakes formed by the 

Wheeler dam and Kentucky dam are due to large tributaries. The spike immediately after Fort 

Loudoun Dam (km 80) is also owing to a tributary confluence.  
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Figure 3.7. Longitudinal profile of sediment dynamics in the Catawba and Wateree and 
Tennessee Rivers. Map of (a) Catawba and Wateree and (b) Tennessee Rivers with their dams. 
Trend in sediment concentration and flux along the (c) Catawba and Wateree (d) Tennessee 
Rivers. The red dots show the dam locations, whereas the blue and grey lines show the sediment 

(c) 
 

(d) 

(a) (b) 
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concentration (mg/L) and adjusted sediment flux (kg/s) obtained from the remote sensing data, 
respectively. The colored areas indicate the extent of reservoirs corresponding to the dams.  
 
 
 

The longitudinal river sediment profiles constructed using the remote sensing data also 

reveal how the effect of trapping gradually decays downstream of dams. Increases (or 

replenishment) of sediment downstream of large dams can be attributed to several mechanisms: 

(i) increased transport capacity of the river flow, leading to channel scour, incision, and bank 

erosion (“hungry rivers”; Kondolf et al., 2014a; Kondolf et al., 2014b; Kummu et al., 2010), 

which was shown to rapidly increase sediment loads downstream (Brandt, 2000; Williams and 

Wolman, 1984), (ii) large tributaries that drain sediment into the main river, (iii) eroded soil from 

the surrounding areas of the river reach catchment, and (iv) dams may have mechanisms to 

release sediment downstream. The relative proportions of downstream sediment recovery that 

can be attributed to these processes need to be quantified to better understand downstream 

sediment recovery processes. However, this remains challenging using our existing data, mainly 

due to lack of data on sediment flows in most major tributaries, limiting our ability to calculate 

the mass balance of sediment along river corridors. 

 

3.3 CONUS Te Model 

Reservoir Te calculated using remote sensing-derived adjusted sediment flux values (Eq. 

1) for the 222 dams, range from 0.13% to 98.3% with a mean of 45.8%, median of 45.3% and a 

standard deviation of 27.3%. Figure 3.8 shows the spatial variability of the remote sensing-

calculated Te. It can be observed that dams with the largest Te values are mostly located in the 

arid mid-west regions of the US, whereas dams in the Eastern and North-West parts of the 

country generally have lower Te values. This suggests that regional climate, particularly aridity, 
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may serve as a proxy for a combination of properties that are common for dams in arid regions. 

These properties may include sediment particle size, reservoir size and depth, and dam 

operations. Many of the dams in the arid mid-west have large reservoirs with limited or no 

ability to release sediment. Also, the sediments in this region tend to be coarser and are, 

therefore, more rapidly deposited due to higher settling velocity, once reaching the reservoir 

(Verstraeten and Poesen, 2000). Many of the dams on Eastern US rivers are not necessarily 

designed for storage (rather for navigation, hydropower generation etc.), and therefore, tend to be 

shallower and/or run-of-river dams. Also, suspended sediments in these regions tend to be finer, 

which decreases their ability to be trapped. Vörösmarty et al. (2003) also found that dams in arid 

regions tend to have larger Te values due to their highly variable discharge regimes, high demand 

for water for irrigation and community water uses, and the resulting necessity to store water.  

 

Figure 3.8. Trapping efficiency (Te; %) of the 222 dams calculated using observed remote 
sensing data.  
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Twenty two (22) explanatory variables were tested to predict reservoir Te using machine 

learning methods and multiple regression, based on the Te calculated for the 222 dams. The list 

of explanatory variables used is provided in Table 3.1. The multiple regression model yielded an 

R2 of 0.72 (Adj. R2 = 0.71) using four variables (log converted): incoming sediment flux, 

outgoing water discharge, reservoir length along the longest part, and reservoir storage. All these 

variables significantly contribute to the regression model (p < 0.05). This indicates that 72% of 

the variability in Te can be explained by these four variables with RMSE of 14.6% and a Nash 

Sutcliffe Efficiency (NSE) of 0.61. The resulting model equation is: 

 

𝑇𝑒 = −7.33 + 30.24 log(𝑄h_&M) − 15.8 log 𝑄��K + 18.01 log 𝐿 + 14.56	 log(𝑆) (2) 

 

where 𝑄h_&M is the adjusted incoming sediment flux (kg/s), 𝑄��K is the outgoing discharge 

(m3/s), 𝐿 is the lake length along the longest part (km), and 𝑆 is the reservoir storage capacity 

(km3). The importance of the independent variables in the model in descending order based on 

the standard coefficients and contribution to change in the R2, are 𝑄h_&M,	𝑆,	𝑄��K, and	𝐿. Figure 

3.9 shows the performance of the multiple linear regression model (Eq. 2) in predicting Te.  



	 	 88	

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. Evaluation of the Te predicted by the regression model (Eq. 2) and the Te calculated 
using remote sensing sediment data (n =222). The orange line is the 1:1 line. The trend line falls 
on the 1:1 line. 

 

For comparison, we calculated Te for these US dams using the Brune (1953) formula for 

individual reservoirs, later adopted globally by Vörösmarty et al. (2003) and Syvitski et al., 

(2005). This is currently the most widely used approach to represent sediment trapping in large-

scale sediment transport models. This method predicts Te for individual reservoirs as a function 

of local water residence time change, calculated as the effective reservoir capacity divided by 

local mean annual discharge. Figure 3.10 shows a comparison between Te calculated using Eq. 2 

and the Brune (1953) formula for reservoirs with > 0.5 km3 storage capacity (defined as large 

reservoirs by Vörösmarty et al. (2003)). Our Te model results in noticeably different values 

compared to the Brune (1953) approach. The most widely accepted idea about reservoir trapping 
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efficiencies yielded by previous studies is that Te is very large for large reservoirs and small for 

small reservoirs. Williams and Wolman (1984) suggested that Te of large reservoirs are 

commonly greater than 99%. Vörösmarty et al. (2003) indicate that the Te of large reservoirs is 

typically ~85%. Contrary to these findings, remote sensing sediment data across the CONUS 

shows that, large reservoirs can have a wide range of Te values.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Comparison of Te calculated using the remote sensing data versus the proposed 
regression model (blue) and Brune (1953) method (red), for reservoirs with >0.5 km3 storage 
capacity (n=65).  

 

The new model (Eq. 2) provides new insights into the drivers of Te. The sediment flux 

entering the reservoir plays an important role in governing trapping within the reservoir and Te is 

higher for higher incoming sediment fluxes. This could be due to the availability of more 

materials for trapping, particularly if the proportion of larger particles which are more likely to 
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deposit within the reservoir, is higher. A study that looked at reservoir trapping for individual 

storm events found that, for similar detention times (length of time runoff from a storm event 

remains in the reservoir), high incoming sediment loads had higher Te (Rausch and Heinemann, 

1975). Rausch and Schreiber (1981) also predicted Te for Callahan Reservoir by storm detention 

time, total storm runoff, and mean inflow sediment concentration. One criticism that 

conventional methods such as Brune (1953) receive is that they are developed for normally 

ponded reservoirs mostly located in temperate settings and do not yield accurate results for 

tropical rivers with highly variable inflows, desilting, or semi-dry reservoirs (Lewis et al., 2013; 

Verstraeten and Poesen, 2000). This may be because sediment trapping is highly influenced by 

the incoming sediment rates. The model proposed here addresses this issue by incorporating 

sediment inflow to the reservoir as a predictor variable.  

The storage capacity of the dam impoundment is also included as a key variable 

indicating that larger reservoirs facilitate more trapping of sediment. Larger values of reservoir 

lengths provide sufficient time for sedimentation within the reservoir, leading to higher Te 

values. This parameter may be a proxy for sediment retention time of the reservoir which is 

widely used by methods such as Brune (1953) and Rausch and Heinemann (1975). If reservoir 

lengths cannot be calculated using established datasets such as NHDplus or GRanD reservoir 

polygons and river networks, it is advised to get the most representative reservoir length 

considering seasonality and reservoir operations.  

Reservoir operating schemes and mechanisms, and timing of sediment release or flushing 

may be important variables that govern Te (Brandt, 2000; Kondolf et al., 2014a). However, 

incorporating these aspects into Te calculations is difficult due to data limitations, difficulty in 

predicting the timing of these mechanisms, and complexity in incorporating it into trapping 
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calculations. In this regard, the age of the dam as an explanatory variable may serve as a proxy, 

as newer dams tend to include sediment release mechanisms. However, dam age was found not 

to be a significant contributor to the model. 

Reservoir storage and reservoir length parameters are widely available or can be 

extracted from existing datasets. Sediment fluxes into the reservoir and, in some cases, outgoing 

discharge are more challenging to obtain. To overcome the challenge of obtaining sediment data, 

a second model was developed using only widely available data to facilitate a wide range of 

applications: 

 

𝑇𝑒 = 60.78 − 21.93 log(𝑄��K) + 21.45 log 𝐿 + 20.81 log(𝑆) (3) 

 

Although this equation has a lower predictive accuracy compared to Eq. 2, it can also 

provide Te estimates with reasonable accuracy (R2=0.61; Adj. R2=0.60; RMSE = 17.1%).  

A machine learning model development was also attempted. In machine learning 

techniques, large datasets help to learn 'hidden' patterns from the data and therefore have the 

potential to achieve higher accuracies than simple statistical methods (Lin et al., 2020). 

However, machine learning techniques are generally suitable for large datasets. The relatively 

small training dataset available in this study hindered the development of a robust machine 

learning model. 

 

3.4 Global Te Model 

We developed a third model for global-scale applications based on data from the 

commonly used Global Reservoir and Dam (GRanD) dataset (Lehner et al., 2011). In addition to 
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the remote sensing-derived Te of the 222 dams in the CONUS, 42 additional observed Te values 

outside the US were used to develop this model. The resulting model had an R2=0.55 (Adj. 

R2=0.54) and an RMSE of 19.2% using five explanatory variables: 

 

𝑇𝑒 = 34.74 − 20.9 log 𝑄��K + 17.83 log 𝑆 + 17.07 log 𝐿 + 6.63 log 𝐸 + 0.07𝐻 (4) 

 

where 𝐸 is soil erosion from within the river reach catchment (tons per year per river 

reach) from Grill et al. (2019), and 𝐻 is the dam height (m). Supplementary Figure S3.1 shows 

the performance of the global Te model (Eq. 4). Using this equation, Te was calculated for 6823 

global dams in the GRanD database for which data were available for essential explanatory 

variables, and dam impoundments fall on the Grill et al. (2019) river network. For 70 GRanD 

dams that did not have reservoir polygons (e.g., individual dams that do not form reservoirs), a 

zero Te was assigned to indicate no sediment trapping for sediment modeling efforts. In addition, 

54 dams primarily built for navigation were also assigned a zero Te. The resulting global Te 

dataset (Figure 3.11) had an average Te of 53.5% (Table 3.2).  

 

Table 3.2: Descriptive statistics of Te values calculated using the global model. 

*the number within parenthesis is the mean reservoir capacity 

 
Number of 
Reservoirs 

Sum of 
reservoir 
capacities 

(km3)* 

Mean Te 
(%) 

Median Te 
(%) 

Standard 
deviation Te 

(%) 

Global 6823 6746 (1.0) 53.5 55.7 19.2 
Africa 624 1043.5 (1.67) 55.7 56.8 18.1 
Asia 2203 2365.5 (1.07) 54.0 55.5 17.6 

Australia and Oceania 234 95.5 (0.41) 52.2 55.8 22.5 
Europe 1245 585.4 (0.47) 50.2 53.9 20.3 

North America 2177 1734.5 (0.80) 53.7 56.0 20.1 
South America 340 922 (2.7) 57.8 59.2 17.5 
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Continental-scale analysis (Table 3.2) shows that the differences between continents in 

terms of average and median Te are small at this scale. South America, contrary to the relatively 

low Te values observed by Vörösmarty et al. (2003), has the highest average Te. This may be due 

to the recent constructions of large dams in the Amazon basin, specially in areas with high 

sediment yield (Latrubesse et al., 2017; Li et al., 2020), which were not included in Vörösmarty 

et al. (2003). Although the number of dams and the total reservoir storage capacity are lower in 

this continent, it has the highest mean reservoir capacity which can lead to larger Te values 

according to the proposed equation. Dams in Africa have the second highest average Te (55.7%) 

in agreement with Vörösmarty et al. (2003) likely due to (i) high proportion of dams in arid 

regions, (ii) the resulting need to have large reservoir capacities to stabilize highly variable river 

flows, and (iii) generally low river discharges (Vörösmarty et al., 2003). Although these 

conditions are similar to Australia and Oceania which has the smallest number of reservoirs and 

the lowest sum of storage capacities in GRanD, the continent resulted in a relatively lower 

average Te than expected. This is due to the large number of hydroelectric dams located in 

Tasmania and New Zealand with shorter water storage times and frequent water releases, which 

can reduce their Te. Asia and North America have the first and second largest number of dams in 

GRanD and the greatest sum of reservoir capacities, respectively, with a moderate continental 

average for Te. It is also important to note that these continental Te values are not representative 

of the overall Te of river basins, but are the averages of individual dam trapping efficiencies for 

each continent.  
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Figure 3.11. Global distribution of Reservoir Te (%) calculated using equation 4 for 6823 dams 
in the GRanD dataset.  

 

In order to test the regional dependency of Te, we tested the explanatory variables to 

develop an equation only involving dam impoundments in China. Te for dams in China can be 
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predicted with a high accuracy (R2=0.80; Adj. R2=0.78; RMSE = 11.25%) using only three 

variables; 

𝑇𝑒 = 230.44 − 43.3 log(𝐷) + 20.21 log(𝑆) + 29.24 log(𝑆𝐴) (5) 

 

where 𝐷 is drainage area (km2), and 𝑆𝐴 is reservoir surface area (km2). The negative 

relationship that upstream drainage area (𝐷) has with Te in this model can be explained by the 

negative relationship between 𝑄 and Te in the global model as well as the CONUS model. In 

regional settings, 𝑄 and 𝐷 tend to have a strong correlation. This may also be indicative of the 

fact that large rivers with large drainage areas can have smaller Te values in this region. 

However, it should be noted that all the observed Te values used to develop this equation are 

from the literature as opposed to the CONUS and global-scale analysis based on remote sensing 

data.  

These different models for different regions indicate that Te may have a strong regional 

dependency and it may be more accurate to develop regional models (for regions smaller than 

continental scale) or calibrations for different settings. Some of the reasons for this regional 

dependency may include climate, river flow regimes, and dam type and operation. Our global Te 

model has a relatively lower predictive capability compared to the CONUS Te model, largely 

due to data limitations. The remote sensing SSC dataset used here for the CONUS is currently in 

the process of being expanded globally. Once this product is available, observed Te can be 

calculated for global dams, allowing us to develop more robust empirical models for predicting 

global Te and potentially use machine learning techniques.  
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4. Conclusion 

Scarcity in sediment monitoring has limited the accuracy and universal applicability of 

reservoir sediment trapping parameterization in hydro-geomorphic models. Emerging remote 

sensing approaches now provide sediment concentration data at large spatial scales, offering 

unparalleled opportunities to improve our understanding of river sediment transport dynamics. 

Using such a dataset, we developed empirical models for calculating Te, based on dam, riverine, 

and basin attributes. The simplicity of the models will allow modelers to easily incorporate them 

into their fluvial sediment models, potentially considerably improving the models’ ability to 

represent the effects of anthropogenic activities on sediment dynamics. The results demonstrate 

that remote sensing-based Te calculations can be particularly useful for large-scale hydrological 

models to represent the trapping efficiencies of reservoirs more realistically than currently 

available methods derived using theoretical approaches.  

A comparison between USGS measured depth-averaged sediment fluxes and remote 

sensing-calculated surface sediment fluxes was conducted for 36 gauging stations. The results 

showed that, with an adjustment factor of 4.45, remote sensing-derived sediment strongly 

aligned with in-situ observations. In this study, we developed data-driven CONUS and global 

models to predict Te using remote sensing observations of long-term sediment data in the US. 

When compared with the Te calculated by previous methods, remote sensing data across the 

CONUS reveal that large reservoirs can have a wide range of Te values. This is contrary to the 

common assertion that Te is very large for large reservoirs and vice versa.  

The development of regional and global models to predict Te revealed that regional 

models better predict Te, but global Te estimates are possible and can be used in global sediment 
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transport modeling. We found that reservoir characteristics, and fluvial sediment and water flux 

metrics are important controls of Te in both regional and global models.  

Future work will include the implementation of the developed sediment trapping model 

within the WBMsed hydro-geomorphic modeling framework (Cohen et al., 2013, 2014). 

WBMsed is a spatially and temporally explicit global-scale model with a robust hydrological 

framework and well-established sediment modules. WBMsed Te module is currently based on 

the Vörösmarty et al. (2003) model. With forthcoming global remote sensing products of SSC, 

Te may also be dynamically assimilated directly for a large dataset of global dams. Improving 

the representation of sediment trapping in hydro-geomorphic models will aid in predicting 

current and future river sediment transport, quantifying the global sediment delivery into the 

ocean, studying ecological impacts associated with sediment in freshwater systems, and 

understanding anthropogenic influences on riverine fluxes. 

 

Supplementary materials for chapter 3 

 

Table S3.1. USGS gage observations (O-) used for validation of suspended sediment flux (Qs) 

and discharge (Q) 

ID USGS site 
# Lat Lon Area 

(km2) 
USGS O-Qs 
time period 

USGS 
O-Qs 
(kg/s) 

USGS 
O-Q 

(m3/s) 

Remote 
sensing 

Qs (kg/s) 

NHDplus 
Q (m3/s) 

1 01357500 42.79 -73.71 8,935 2003-2018 15.05 179.84 3.99 171.91 
2 06486000 42.49 -96.41 814,811 1992-2019 257.31 909.59 40.53 1066.60 
3 06610000 41.26 -95.92 836,049 1992-2019 476.65 1056.64 65.95 1065.09 

4 06807000 40.68 -95.85 1,061,896 1992-2019 736.73 1259.21 118.54 1262.72 
5 01331095 42.94 -73.65 9,772 1992-2001 2.61 198.59 2.05 183.99 
6 05587455 38.95 -90.37 443,665 1990-2016 690.98 3665.79 204.44 3681.30 
7 12340500 46.88 -113.93 15,594 1989-2016 3.65 79.48 1.14 83.65 
8 07020500 37.90 -89.83 1,835,267 1988-2016 2659.89 6810.37 638.16 6483.72 
9 04193500 41.50 -83.71 16,395 1988-2003 36.70 171.62 11.46 157.98 

10 02489500 30.79 -89.82 17,024 1986-1993 39.20 284.70 15.35 330.61 
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11 05474000 40.75 -91.28 11,168 1985-2019 64.06 100.35 7.37 90.94 
12 06452000 43.75 -99.56 25,680 1985-2019 111.70 21.61 3.08 17.83 
13 05465500 41.18 -91.18 32,375 1985-2019 74.09 313.70 12.19 282.50 
14 11303500 37.68 -121.27 35,066 1985-2019 7.79 108.86 3.68 134.60 
15 08330000 35.09 -106.68 45,169 1985-2019 28.16 33.52 7.76 39.21 
16 08332010 34.42 -106.80 49,806 1985-2019 24.67 28.87 5.86 27.66 
17 08354900 34.26 -106.89 69,334 1985-2019 81.17 29.15 5.99 26.07 
18 08358400 33.68 -107.00 71,743 1985-2019 71.14 22.33 9.30 24.72 
19 11447650 38.46 -121.50 nan 1985-2019 41.72 587.21 15.39 749.23 
20 05325000 44.17 -94.00 38,591 1985-2017 46.22 186.17 5.35 141.84 
21 07010000 38.63 -90.18 1,805,223 1985-2017 2642.23 6522.81 572.56 6194.66 

22 07022000 37.22 -89.46 1,847,181 1985-2017 2557.32 7081.22 658.07 6699.36 
23 05586100 39.70 -90.65 69,264 1985-2011 170.20 740.62 39.04 722.86 
24 05481650 41.68 -93.67 15,128 1985-2004 5.63 114.59 2.24 110.19 
25 04198000 41.31 -83.16 3,240 1985-2002 7.62 36.61 2.44 33.25 
26 05288500 45.13 -93.30 49,469 1985-1996 7.84 284.49 4.21 272.13 
27 02116500 35.86 -80.39 5,905 1985-1994 20.40 82.78 4.81 91.75 
28 09364500 36.72 -108.20 3,522 1985-1993 13.19 22.66 1.63 25.67 
29 09217000 41.52 -109.45 36,260 1985-1992 3.16 41.63 1.28 53.22 
30 01638500 39.27 -77.54 24,996 1985-1991 35.13 286.29 7.15 301.42 
31 06115200 47.63 -108.69 105,281 1985-1991 138.49 231.88 23.02 268.70 
32 06329500 47.68 -104.16 178,966 1985-1991 206.37 320.78 54.76 353.50 
33 01567000 40.48 -77.13 8,687 1985-1990 2.83 127.17 2.63 130.88 

34 05454500 41.66 -91.54 8,472 1985-1987 8.45 79.30 2.06 71.13 
35 09368000 36.78 -108.68 33,411 1985-1986 108.66 47.48 4.61 61.73 
36 12334550 46.83 -113.81 9,472 1986-2016 1.61 37.22 0.85 40.15 
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Figure S3.2. Evaluation of the global Te regression model (Eq. 4) and observed Te from remote 
sensing sediment data for dams in the US and Amazon, and from literature for dams in India and 
China (n =158). The grey line is the 1:1 line. The trend line falls on the 1:1 line. 
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CHAPTER 4 

SIMULATING ANTHROPOGENIC INFLUENCE ON FLUVIAL SEDIMENT DYNAMICS 
USING A GLOBAL RIVER SEDIMENT MODEL 

 
Abstract 

Riverine sediment is an important agent of material transport on the Earth, contributing to 

maintaining the connectivity between the planet’s terrestrial realm, freshwater systems, and the 

ocean. Soil erosion and sediment transport through rivers are highly influenced by human 

activities such as land use changes and dam construction. In this study, we analyze the potential 

impact of land use change and sediment trapping on suspended sediment dynamics in large 

global rivers. We introduce a new sediment transport module within the WBMsed global scale 

hydro-geomorphic modeling framework, termed WBMsed-ELM. The new module includes a 

physically-based hillslope soil erosion and a mass-conserving sediment routing approach. These 

allow for more explicit representations of anthropogenic factors (i.e. sediment trapping behind 

dams and land use changes). The validation of model-predicted sediment fluxes against observed 

data shows that WBMsed-ELM has similar level of predictive skills as the original WBMsed 

model in capturing the spatial variability of long-term averaged global river sediment fluxes. 

Using this new model, we simulated the individual and combined impacts of croplands and dams 

on river sediment fluxes. Our predicted soil erosion in croplands is 11.9 billion tons per year for 

the year 2000, in agreement with the estimates in the literature. According to WBMsed-ELM, 

croplands alone have increased average global river sediment fluxes by 63.4% between 1960 and 

2014. In contrast, dams have reduced the sediment load to the ocean by 19.1% only considering
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large rivers. Comparison against longitudinal sediment dynamics from remote sensing show that 

the model does not represent well the sediment recovery downstream of dams. Due to this, our 

estimates of the global contemporary suspended sediment flux to the global ocean from large 

river outlets which is 0.12 billion tons per year, is much less than previous estimates. 

Considering the combined effect of land use changes and sediment trapping behind dams, 

WBMsed-ELM estimates that there is a net global increase of 6.4% in sediment delivery to the 

ocean, compared to pristine conditions. 

 

1. Introduction 

Sediment transported by river flows plays a key role in ecosystem functioning, 

biogeochemical cycling and geomorphological processes of the Earth (Vörösmarty et al., 2003; 

Walling and Fang, 2003). Sediment is responsible for creating landform features such as deltas 

and governing river channel morphology (Bamunawala et al., 2018; Ibáñez et al., 2019). As a 

major water quality indicator, it determines the turbidity of water flowing in rivers and can turn 

rivers into non-usable muddy water if in excess, also leading to an increase in flood risk due to 

sediment deposition (Battista et al., 2020; Lamb et al., 2020). Sediment contains and transports 

eroded soil from hillslopes to downstream areas, along with the nutrients and 

agricultural/industrial pollutants attached to them, acting as an important agent of nutrient and 

pollutant transport (Boardman et al., 2019; Walling, 2009). Especially, the significant 

contribution of particulate organic carbon to the Earth’s terrestrial carbon budget is increasingly 

being recognized (Tan et al., 2017; Zhang et al., 2020). Alterations to the river sediment 

equilibrium may disrupt riverine, coastal, and marine ecosystem functioning as well as human 

water uses, and undermine the stability of man-made infrastructure (Battista et al., 2020; 
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Vercruysse et al., 2017). Therefore, evaluating and predicting these changes in river sediment 

fluxes is vital to understand the quality of available water resources on the planet and the 

functioning of earth surface processes (Haddeland et al., 2014; Tsuruta et al., 2018). While the 

processes governing each stage of the sediment transport continuum are fairly well understood – 

detachment of organic and inorganic matter from land surface through erosion, transport through 

runoff to a nearby stream, and transported downstream through suspension, deposition and 

resuspension in the water column toward the basin outlet – the combined interconnectivity of 

these stages is highly variable and complex in nature (Fryirs, 2013).  

Human activities have substantially altered the natural sediment loads of global rivers in 

recent decades (Grill et al., 2019; Syvitski et al., 2022). For example, researchers have estimated 

that the fluvial sediment flux to the oceans decreased by about 26% between 1950 and 2000 due 

to the trapping of sediment by dams (Syvitski et al., 2005). On the other hand, agricultural 

expansion and deforestation have led to increased soil erosion and sediment supply from land 

through land clearing, soil disturbance, and irrigation (Garcia-Ruiz et al., 2015; Walling, 2009), 

while conservation agriculture and reduced tillage has shown to decrease sediment loads in the 

recent decades in countries such as the United States and Argentina (Li and Fang, 2016; Tan et 

al., 2021). Although a general scientific understanding about the relationships between natural 

sediment transport processes and anthropogenic influences exists, including them in predictive 

modeling frameworks is a challenging task (Cohen et al., 2014; Tsuruta et al., 2018). Such 

models can be used to elucidate the effect of anthropogenic modifications of the landscape, 

climate, and freshwater systems on riverine fluxes, study the influence of individual stressors, 

simulate future or theoretical change scenarios, quantify changes in ungagged locations, and 

predict spatial and temporal dynamics across the river systems from local to global scales 
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(Merritt et al., 2003). Although, the scientific literature has seen great advancements in 

numerical modeling of fluvial sediment at various scales over the past few decades, explicitly 

and accurately representing anthropogenic drivers in these models over large scales is still 

evolving (Fagundes et al., 2020). In this regard, progress has been made in recent years in 

enhancing and adopting existing complex physically-based models for application in large 

spatial scales (i.e. global) and improving the availability of the required input data (Li et al., 

2022).  

In this study, we developed a new global riverine sediment transport module within the 

WBMsed framework which features an explicit and process-based representation of soil erosion, 

along with sediment trapping behind dams. This allows us to investigate the effect of landscape 

processes and their anthropogenic modifications on global fluvial sediment fluxes. This new 

development utilized the capabilities of the WBMsed global-scale hydro-geomorphic model, 

which simulates spatially and temporally explicit water and sediment fluxes (Cohen et al., 2013, 

2014). WBMsed is a suite of sediment modules (Cohen et al., 2022) within the WBMplus global 

daily water balance/transport model (Wisser et al., 2010), which constitutes a key element in the 

FrAMES hydrological–biogeochemical modeling framework (Wollheim et al., 2008). 

WBMsed’s current suspended sediment module employs the BQART empirical model (Syvitski 

and Milliman, 2007) as its governing equation for calculating long-term average suspended 

sediment loads. The stochastic Psi equation (Morehead et al., 2003) is used to calculate daily 

sediment loads to capture the intra- and inter-annual variability observed in natural river systems 

(Morehead et al., 2003; Cohen et al., 2014). This model has been proven to be successful in 

predicting suspended sediment loads in global rivers and studying different mechanisms and 

drivers associated with these processes (e.g. Cohen et al., 2013, 2014; Syvitski et al., 2014, 2019; 
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Taylor et al., 2015). However, the empirical nature of the equations has its limitations and 

restricts our ability to understand the underlying physical processes in sediment transport and the 

mechanisms by which they are affected by various drivers of change. Although empirical models 

are simple to use and conceptually easy to understand, they can be ineffective for simulating 

environments outside those that were used to develop and calibrate them (De Vente et al., 2013; 

Tan et al., 2018). Also, the model currently does not explicitly route sediment along the river 

network, but rather predicts sediment load for each pixel, based on its upstream basin-averaged 

conditions. 

The new sediment transport module, presented herein, includes (i) a hillslope soil erosion 

component to represent hillslope sediment supply to rivers, (ii) more explicit and improved 

representations of anthropogenic factors (i.e. dam construction and land use changes) that affect 

fluvial sediment dynamics, and (iii) process-based sediment yield representations and sediment 

routing in place of current empirical equations. However, it should be noted that no models are 

practically fully physically based (Pandey et al., 2016). Numerous empirical/conceptual 

procedures are included in the mathematical expressions used in these models to simulate 

different processes. The purpose of incorporating more physically based representations is to (i) 

get a more accurate representation of sediment erosion, deposition, and transport processes, (ii) 

be able to include spatially varying soil properties and surface characteristics to represent the 

complexity of the natural environment, and (iii) better understand the driving forces of changes.  

Several review papers published recently have compared the capabilities and limitations 

of existing erosion and sediment transport models (De Vente et al., 2013; Merritt et al., 2003; 

Pandey et al., 2016; Papnicolaou et al., 2008; Zi et al., 2019). By comparing the performance of 

eight well-known sediment yield models, Tan et al. (2018), found that the Morgan model 



	 	 111	

(Morgan, 2001) performs best in predicting the spatial variability of sediment fluxes at large 

spatial scales because of its more realistic representation of erosion and sediment transport 

processes. In addition, several new models were developed in recent years to simulate global-

scale sediment dynamics which intended to capture various aspects of sediment transport in 

much detail as possible. Some of these models include Hatono and Yoshimura (2020), 

MOSART-sediment by Li et al. (2022), improved Morgan model by Tan et al. (2018), sediment 

transport model developed by Tsutura et al. (2018). These models differ significantly in 

structures, spatial and temporal scales, input data requirements, and represented physical 

processes. In regards to soil erosion, Borrelli et al. (2017) and Borrelli et al. (2020) used the 

Revised Universal Soil Loss Equation (RUSLE; Renard et al., 1997) to model global soil erosion 

potential at a high-resolution for the present and future, respectively. After careful consideration 

of the available global scale hillslope erosion and sediment transport models, we adopted the soil 

erosion module developed for the Energy Exascale Earth System Model (E3SM) land model 

(ELM), named ELM soil erosion model (ELM-Erosion) by Tan et al. (2021), to simulate 

hillslope erosion and land-based sediment supply in the new sediment module.   

ELM-Erosion implements the Morgan-Morgan-Finney model (Morgan & Duzant, 2008), 

which is capable of representing soil erosion and sediment transport processes in diverse 

environments (Tan et al., 2018, 2020). This model also shows a considerable improvement over 

the RUSLE model with a more realistic representation of the influence of topography on soil 

erosion. The model also has an explicit representation of land use changes including the effect of 

cropland management actions (e.g. conservation agriculture, crop residue management). In the 

implementation of ELM-Erosion within WBMsed (termed WBMsed-ELM), we introduced a 

new sediment routing scheme to explicitly transport the eroded sediment along the river network. 
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This routing scheme considers the impacts of dams on sediment trapping, which is calculated 

using a newly developed reservoir trapping efficiency parameter (Moragoda et al., in press; 

Chapter 3).  

We conducted separate validations for the model simulated sediment fluxes using a 

variety of independent observation datasets. The model was then used to simulate suspended 

sediment dynamics in large global rivers for the period between 1960 – 2014 in response to 

human activities. The subsequent analyses explore the contribution of various factors (trapping 

behind dams and land use change) and their combinations that drive the trends in global 

sediment dynamics. 

 

2. Methods 

2.1 WBMsed-ELM Model Description 

The ELM-Erosion model was introduced as a new sediment module within the WBMsed 

framework. The ELM-Erosion model description in Tan et al. (2021) was closely followed in 

this implementation with some adjustments and simplifications in some variable 

parameterizations, which are described in section 2.2.  

ELM-Erosion calculates soil erosion as the sum of rainfall-driven erosion and runoff-

driven erosion. It then calculates the sediment transport capacity of the overland flow. The 

amount of sediment flux reaching the river network is calculated as the lesser value between soil 

erosion and sediment transport capacity.  

Soil detached by rainfall (𝐹; kg m-2 s-1) is calculated as 

𝐹 = 𝑐" ∗ 𝐾 ∗ 𝑃�� ∗ 𝐿 ∗ 𝐺𝐶 ∗ (𝐾𝐸�� + 𝐾𝐸��) (1) 
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where 𝑐" is a free adjustment parameter in ELM-Erosion calibrated based on soil texture, 

vegetation, and rain regimes, 𝐾 is soil erodibility (kg J−1), 𝑃�� is conserved agriculture (CA) 

factor (𝑃�� = 2.7 if no cropland in a pixel is under CA and 𝑃�� = 1 if 100% of cropland in a pixel 

is under CA), 𝐿 is lithology erodibility index (highest for unconsolidated sediments and the 

lowest for acid plutonic rocks; Moosdorf et al., 2018), 𝐾𝐸�� is the kinetic energy (J m-2) of the 

direct throughfall from both natural rainfall and anthropogenic irrigation and 𝐾𝐸�� is the kinetic 

energy (J m-2) of the leaf drainage from natural rainfall calculated as 

𝐾𝐸�� = 𝑅 ∗ 1 − 𝐶𝐶 + 𝐶𝐶 ∗ 1 − 𝐴 ∗ (11.87 + 8.73 ∗ 𝑙𝑜𝑔"~ 𝐼 ) (2) 

	 𝑅 is the total rainfall (mm), 𝐴 is the fraction of the rainfall intercepted by the vegetation 

or canopy cover, 𝐶𝐶 is canopy cover fraction, and 𝐼 is rainfall intensity (mm h−1); 

𝐾𝐸�� = 𝑅 ∗ 𝐶𝐶 ∗ 𝐴 ∗ 𝐷𝑅 ∗ (15.8 ∗ 𝑃𝐻~.H − 5.87) (3) 

where 𝐷𝑅 is the fraction of leaf drainage and 𝑃𝐻 is the height of the plant canopy (m). 

Runoff-driven erosion (𝐻; kg m-2 s-1) is calculated as 

𝐻 = 19.1 ∗ 𝑐5 ∗ 𝑍 ∗ 𝑃�� ∗ 𝐿 ∗ 𝐼x ∗ 𝐺𝐶 ∗ 𝑅h ∗ sin 𝜃 (4) 

where 𝑐5 is a free adjustment parameter in ELM-Erosion calibrated based on soil texture, 

vegetation, and rain regimes, 𝐼x is the BQART glacier erosion factor calculated as 𝐼x = 1 +

0.09 ∗ 𝐴x where 𝐴x is the areal fraction (%) of glaciers in a grid cell, 𝑅h is the surface runoff 

(mm), and 𝜃 is the slope angle.	𝑍 is soil detachability by runoff (kg mm−1) which is calculated 

as	𝑍 = 1/(0.5 ∗ 𝐶𝑂𝐻) where 𝐶𝑂𝐻 is the cohesion of the soil (Pa). The values of 𝐾 and 𝐶𝑂𝐻 are 

assigned based on soil texture types, as described in Tan et al. (2018).  
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Sediment transport capacity of overland flow 𝑇� (kg m−2 s-1) is calculated as 

 
𝑇� = 0.0191 ∗ 𝑐F ∗ 𝑆𝑅 ∗ 𝑃�� ∗ 𝐿 ∗ 𝐼x ∗ 𝑅h ∗ sin 𝜃�  (5) 

 
where 𝑐F is a free basin-specific adjustment parameter in ELM-Erosion calibrated based 

on surface roughness, drainage density, and rain regimes, and 𝑆𝑅 is surface roughness factor.  

We employed limited calibration to a small number of the aforedescribed variables. The 

original ELM-Erosion employs a power of 1.5 for 𝑅h in Eq. 4 and a power of 2 for 𝑅h in Eq. 5. 

In WBMsed-ELM each of these have been adjusted to 1, to reflect the model’s greater runoff 

prediction range. Our validation procedure showed that the original exponent leads to 

overestimation of larger observed sediment flux values and underestimation of smaller observed 

sediment flux values. In addition, the exponent 𝛾 in Eq. 5 was 1.25 in ELM-Erosion following 

Pelletier (2012). We found that	𝛾 =1.0 produces a more realistic response in sediment flux to 

slope, specially in high slope areas. 

The ground cover factor 𝐺𝐶 in equations 1 and 4 represents the reduction of erosion by 

plant residue and roots, 

𝐺𝐶 = 𝑒���∗ ¡¢ �£,�¥¦§ ��¨∗©¨ (6) 

where 𝐶ª is surface cover fraction calculated from the plant residue, 𝐶��L is surface cover 

fraction calculated from leaf area index, 𝑏�  (𝑏�" and 𝑏�5 for rainfall-driven and runoff-driven) is 

plant functional type (pft)-specific parameters for the effectiveness of surface cover in reducing 

soil erosion, 𝑏e(𝑏e"	and	𝑏e5	for rainfall-driven and runoff-driven) is pft-specific parameters for 

the effectiveness of roots in reducing soil erosion, and 𝐵e is root biomass density at the topsoil 

(kg m−3). 



	 	 115	

The surface cover fraction 𝐶ª is calculated using plant residue biomass on the ground 𝐵ª 

(kg m−2) as 𝐶ª = 1 − 𝑒�¬∗©£, where 𝛼 is a regression coefficient that is set as 6.680 for the 

residue of all pfts. The surface roughness factor	𝑆𝑅 in equation 5 is calculated as a function of 

Manning's coefficient	𝑛.  

𝑆𝑅 =
0.03
𝑛

~.®

 
(7) 

where 𝑛 is calculated as 𝑛 = 0.03 + 0.05 ∗ max	(𝐶ª, 𝐶��L). 

The WBMsed-ELM sediment routing scheme calculates sediment load in each pixel as 

the sum of sediment flux generated in that pixel and the sediment flux reaching to it from 

upstream. Sediment trapping behind dams is calculated using a newly developed global reservoir 

trapping efficiency (Te) model (Moragoda et al., 2023; Chapter 3). At dam locations, the Te 

value of the dam is applied to the incoming sediment flux, allowing only the outgoing sediment 

flux from the dam to flow downstream. 

 

2.2 Model Data and Implementation 

The WBMsed-ELM model simulations were conducted at 6 arc-min (0.1 degree) spatial 

resolution at daily time steps, for the period between 1960-2014. TerraClimate (Abatzoglou et 

al., 2018) was used as the climate forcing dataset. In Tan et al. (2021), the effects of LULC on 

soil erosion for the period between 1960- 2014 were simulated using LULC data from the Land 

Use Harmonized version 2 (LUH2) transient dataset (Hurtt et al., 2011) which was converted to 

24 ELM plant functional types (pfts) including a bare ground pft, 14 natural vegetation pfts and 

10 crop pfts. The 10 crop pfts include five rainfed crop pfts (e.g., corn, cereal, soybean and 

generic crop) and five irrigated crop pfts (e.g., corn, cereal, soybean and generic crop). The 14 
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natural pfts include needleleaf evergreen tree (temperate and boreal), needleleaf deciduous tree 

(boreal), broadleaf evergreen tree (tropical and temperate), broadleaf deciduous tree (tropical, 

temperate and boreal), broadleaf evergreen shrub, broadleaf deciduous shrub (temperate and 

boreal), C3 arctic grass, C3 grass, and C4 grass. We used a simplified representation of LULC in 

WBMsed-ELM by choosing the dominant pft class in each pixel for crop pfts and natural pfts, 

separately. The model then calculates rainfall-driven erosion (Eq. 1) and runoff-driven erosion 

(Eq. 4) for these two dominant land use classes separately, and computes weighted average 

rainfall-driven erosion and runoff-driven erosion based on the percentage cropland in each pixel. 

In the original ELM model, these two equations are calculated for all the pfts present in each 

pixel separately, and their weighted averages are computed based on the fraction of each pft in 

that pixel. In order to run the WBMsed-ELM model in ‘pristine’ mode, which excludes 

anthropogenic impacts, the dominant land use class was chosen only from the natural vegetation 

pfts, and all agricultural land uses were ignored. In addition, the pristine mode excludes the 

conserved agriculture factor (𝑃��), irrigation water use, and dams. Equation input data for 

WBMsed-ELM and their spatial and temporal resolutions are given in Table 4.1. 

 

Table 4.1. The list of input parameters of the soil erosion model 

Parameter Description 
Spatial 

Resolution 
(degree) 

Temporal 
Resolution Data source 

𝑐", 𝑐5, 𝑐F Free calibration 
parameters 0.5 Static  

𝑃�� Conservation 
agriculture factor 0.5 Annual 

E3SM – created using global 
CA map of Prestele et al. 
(2018) and for the United 

States (US), US county-level 
tillage data compiled by the 
Conservation Technology 
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Information Center (CTIC, 
2008) 

𝐿 Lithology erodibility 
index 0.1 Static 

Global Lithological Map 
database v1.1 (GLiM, 

Hartmann & Moosdorf, 
2012) 

𝐿𝐴𝐼 Leaf Area Index 1 Annual E3SM land model 

𝐵e Root biomass density 
at the topsoil 0.5 Daily E3SM land model 

𝐵ª Plant residue biomass 
on the ground 0.5 Daily E3SM land model 

𝐼 Rainfall intensity 0.5 Daily E3SM land model 
𝑄𝑊𝐷𝑅𝐼𝑃 Leaf drainage 0.5 Daily E3SM land model 
𝑄𝑊𝑇𝑅𝐺𝐻 Direct rain throughfall 0.5 Daily E3SM land model 

𝑃𝐻 Height of the plant 
canopy 0.1 Static Simard et al. (2011) 

𝐴x Areal fraction of 
glaciers in a grid cell 0.5 Static ICE5Gv102 

𝑅h Surface runoff   
 WBMplus which is the 
hydrological module of 

WBMsed  

𝜃 Slope angle of the grid 
cell 0.5 Static E3SM land model 

Clay, 
Sand, Silt 

Percentage clay, sand, 
and silt in soil in the 

top 20cm 
0.1 Static ISRIC-WISE v1.1 

Land use 

Dominant plant 
functional type (pft) 
class in each pixel 

(generated separately 
using the combination 

of natural and crop 
pfts, as well as natural 

pfts only) 

0.1 Annual 

E3SM - created using Land 
Use Harmonized version 2 
(LUH2) transient data set 

(Hurtt et al., 2011)  

CRP Percentage of 
croplands in each pixel  0.5 Annual E3SM land model 

𝐼𝑊𝑈 Irrigation Water Use 0.25 Static Zhang et al. (2022) 

Te Sediment trapping 
efficiency by dams 0.1 Annual Moragoda et al. (2023) 

 

In order to test the influence of land use change, dams, their combined effect, we 

designed 3 experiments (Table 4.2). The Pristine experiment excludes croplands, conserved 

agriculture factor (𝑃��), irrigation water use, and dams. The LULC experiment excludes dams, 
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but includes anthropogenic land use changes (i.e. croplands, irrigation, and 𝑃��). The Te 

experiment includes anthropogenic land use changes and sediment trapping by dams. The 

difference in the model predictions between LULC and Pristine, Te and LULC, Te and Pristine, 

is used to isolate the impacts of land use changes, dams, and anthropogenic factors (combined 

effect of land use and dams) on sediment flux, respectively.  

 

Table 4.2. Summary of different model experiments to evaluate the influence of land use change, 
dams, their combined effect on sediment loads. 
 

Experiment Trapping 
efficiency 

Agricultural land 
uses 

Natural land uses 

Pristine No No Yes 

LULC No Yes Yes 

Te Yes Yes Yes 

 

 
2.3 Validation of soil erosion and sediment flux 

Separate evaluations were conducted for WBMsed-ELM soil erosion and final sediment 

flux values. Soil erosion simulations were compared against RUSLE (Borrelli et al., 2017) and 

the ELM simulations by Tan et al. (2021). Validation of sediment fluxes simulated by WBMsed-

ELM was conducted using three datasets. The model’s long-term average discharge and 

sediment flux predictions were compared against long-term average observations in 228 USGS 

sites which is a combination of the standard WBMsed validation dataset (Cohen et al., 2022) of 

41 USGS sites where the discharge record is over 20 years in large rivers with discharge > 30 

m3/s and drainage areas > 10,000 km2, and 187 USGS sites which comprises of both small and 

large rivers with a wide range of drainage areas and discharge values. The reason to conduct two 
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separate validations for the two USGS datasets is that the original WBMsed model is designed to 

predict sediment discharge in large rivers and could have substantial uncertainty for small rivers. 

Validation of global sites was conducted using values reported in 132 global basin outlets from 

the M&S05 database (Syvitski and Milliman, 2007), which is also a standard dataset used for the 

validation of WBMsed predictions (e.g. Cohen et al., 2014). Furthermore, the model predicted 

discharge and sediment fluxes were used to calculate sediment concentration and compared 

against 14 global Total Suspended Solid (TSS) observations in the Global Database on River 

Sediment Composition (GloRiSe; Müller et al, 2021). We also compared the WBMsed-ELM 

model predictions with the Gardner et al. (2022) dataset of remotely sensed fluvial sediment 

along the longitudinal profiles of two major rivers in the US. 

 
 
3. Results  

3.1 Global soil erosion predictions 

WBMsed-ELM successfully reproduces the spatial variability of global soil erosion 

predicted by ELM-Erosion and the global RUSLE model developed by Borrelli et al. (2017) 

(Figure 4.1(a), (b) and (c)). The disparities in soil erosion predictions are mainly due to the land 

use simplification and the difference in the source of runoff input data used in WBMsed-ELM. 

To a lesser degree, the differences in a few other input data sources used in WBMsed-ELM (e.g. 

Leaf Area Index, irrigation water use, soil sand, silt and clay percentages, and plant canopy 

height) may also have contributed. We predict an average annual global soil erosion of 24.7 

million ton/km2/yr for the year 2001 whereas ELM-Erosion predicts 3.2 million ton/km2/yr, and 

RUSLE-based modeling (Borrelli et al., 2017) estimated 76.7 million ton/km2/yr. The near order 
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of magnitude difference in our model predictions compared to ELM-Erosion is due to the higher 

values of runoff predicted by the hydrological module of WBMsed-ELM. 

(a) 

 

(b) 

 
	

(c) 
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Figure 4.1. (a) RUSLE soil erosion from Borrelli et al. (2017), (b) ELM-Erosion sediment yield, 
(c) WBMsed-ELM sediment yield, (d) WBMsed-ELM sediment yield with original ELM runoff 
for 2001. 
 

 
Figure 4.2 shows the difference in the spatial distribution of runoff between the two 

models. Considering the differences between Figure 4.1 (c) and (d), where the only main 

difference arises from runoff, it is clear that the differences in WBMsed-ELM predicted soil 

erosion mainly corresponds to the differences in the runoff input shown in figure 4.2. This is 

particularly evident in deserts and arid regions such as Gobi, Patagonian, Kalahari and Namib, 

central Asian deserts, Arabian desert, Thar desert, Australia, Eastern horn of Africa, and Mid-

Western USA where runoff is generally much lower. The runoff used in ELM-Erosion, which 

comes from the hydrological simulations of E3SM, predicts higher runoff values for these areas. 

Lawrence et al.  (2019) and Li et al. (2020) mention that E3SM, and Earth System Models in 

general, still have large uncertainties associated with runoff and streamflow simulations. In 

contrast, there is high degree of confidence in the accuracy of WBMplus hydrological 

predictions used in our model (Fekete et al., 2002; Cohen et al., 2022). Therefore, WBMplus 

runoff may have contributed to improving soil erosion predictions. However, comprehensive 

(d) 
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validation datasets of observed soil erosion corresponding to the time period of simulations are 

not available to evaluate the model performance with these changes. 

 

(a)  

(b)  

Figure 4.2. (a) Runoff input in WBMsed-ELM (b) Runoff in original ELM-Erosion. 

 

The differences between Figure 4.1 (b) and (d), which shows the difference between the 

original ELM-Erosion and WBMsed-ELM using the same runoff input, could be mainly a result 

of the land use simplification used in WBMsed-ELM. This difference is more prominent in areas 

such as India, China, Australia, South-East Asia, some parts of Canada and Alaska, western 

Europe, Brazil, Argentina, some countries in central Asia, and the Amazon. Most of these 

regions consist of tropical and subtropical croplands where WBMsed-ELM generally 

underestimates soil erosion. Thus, the land use simplification in WBMsed-ELM may have 
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excluded the areas of more erosive croplands when choosing the dominant crop pft class. 

However, overestimations of soil erosion can be seen in Canada and Alaska and particularly the 

Amazon, where natural forests with dense vegetation are dominant. Although the reasons for this 

are less evident, it may be due to the influence of the calibration factor used by the runoff driven-

erosion equation.          

Both ELM-Erosion and WBMsed-ELM predict high soil erosion in (i) areas with high 

agricultural activity, including the plains in China, India, USA, and South America, (ii) areas 

with steep slopes such as Himalayas, Alps, and Andes mountain ranges, and (iii) areas with high 

runoff such as South-East Asia, Central America, some central African regions, some parts of 

Europe and Eastern and Western regions of North America. In contrast, lower soil erosion is 

predicted for arid areas with small amounts of runoff (e.g. Australia, Eastern horn of Africa, 

Mid-Western USA, and Mexico), and areas with dense vegetation which include tropical and 

boreal forests with the exception of Amazon. Soil erosion is negligible in desert areas such as the 

Sahara, central Asian deserts, Atacama, and Arabian desert. 

 

3.2 Global river sediment flux predictions and validation 

 

Figure 4.3 shows the results of the global river sediment fluxes simulated by WBMsed-

ELM in the LULC experiment (no dam sediment trapping). The global map of river sediment 

fluxes mostly corresponds to the soil erosion predictions as expected. Consistent with 

observations (Milliman and Farnsworth, 2011; Syvitski and Milliman, 2007), the simulated 

global sediment flux toward the coastal regions is mainly contributed by large rivers in the 

tropics and subtropics, such as Amazon, Ganges-Brahmaputhra, Parana, Nile, Yangtze, Yellow, 

Mississippi, Indus, Mekong, Irrawaddy, and Congo (Cohen et al., 2014).  
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(a) 

 

(b) 

 

Figure 4.3. River sediment fluxes simulated by WBMsed-ELM in the LULC experiment (a) 
globally and, (b) for the Continental United States. 
 

Figure 4.4 shows the validation conducted for WBMsed-ELM predicted water discharge 

and suspended sediment fluxes against observed data. The validation between the predicted and 

observed water discharge for 228 US sites (Figure 4.4a) and 132 global sites (Figure 4.4b) 

confirms the robustness of the WBMsed hydrological module in predicting the long-term 

average discharge globally as well as in the US. It is essential for the model to have accurate 

discharge predictions, as it is a major factor that drives sediment fluxes in rivers. The validation 

of model predicted sediment fluxes for the US against the WBMsed standard USGS measured 
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sediment fluxes (n=41) shown in Figure 4.4c and the validation statistics shown in Table 4.3 

indicate that the pristine and LULC simulations compare well with the original WBMsed 

predictions and the model captures the spatial variability in sediment fluxes within the US 

reasonably well. This can also be seen with the global validation against the M&S05 dataset 

(Figure 4.4e). Both the original WBMsed and WBMsed-ELM predictions against the newly 

compiled USGS dataset show relatively lower prediction accuracy due to the fact that this dataset 

contains smaller rivers and variable time periods and number of observations. The original 

WBMsed can have substantial uncertainty for small rivers. Table 4.3 shows that our model 

(Pristine and LULC experiments) also has similar accuracy as the original WBMsed in 

predicting the sediment loads in these gauging stations. However, the Te experiment in general 

shows a poor performance compared to the other model setups and the original WBMsed. The 

reasons for this underperformance of the Te simulation is discussed in section 3.4.  

It is important to note that WBMsed-ELM is a model configuration mainly aimed at 

explicitly simulating the major sediment transport processes and their driving factors such as 

various human activities (i.e. land use changes and dams) in global rivers. The process-based 

equations and their input data used in this model are still maturing for use at continental and 

global scales. On the other hand, the original WBMsed employs empirical equations which are 

developed based on their fit with global-scale observations, hence they tend to have superior 

correlation with observation datasets. However, this empiricism is a hurdle for the study of the 

processes and drivers affecting river sediment fluxes (Li et al., 2022). Therefore, it is reasonable 

for the newly developed WBMsed-ELM to have lower or comparable predictive accuracy than 

the original WBMsed. This new framework and the input datasets can be further improved and 

refined in the next steps to increase its accuracy. At this stage, we only opted to compare the 
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model’s competence in capturing the spatial variability of long-term average predictions of 

sediment fluxes, which is the main purpose and capability of WBMsed. In the next steps, we 

hope to test the model performance in simulating the temporal variability in global river 

sediment fluxes.  

(a) (b)  

(c) (d) 
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(e) (f) 

 

Figure 4.4. Comparison of long-term averaged WBMsed-ELM water discharge for (a) 228 US 
sites against USGS observed water discharge data (b) 132 global sites against M&S05 observed 
water discharge data (c) sediment loads for 41 US sites against the WBMsed standard USGS 
observed sediment dataset (d) sediment loads for 187 US sites against the new USGS observed 
sediment dataset (e) sediment loads for 132 global sites against M&S05 observed sediment data 
and, (f) sediment concentration for 14 global sites against the GloRiSe observed total suspended 
solids data. 

 

Table 4.3. Coefficient of Determination (R2) and Root Mean Square Error (RMSE) of the 
validation between WBMsed-ELM and observed sediment data shown in Figure 4.4.  
 

 

MnS92+ (n=132) 

Standard USGS 

(n=41) 

New USGS 

(n=187) GloRiSe (n=14) 

R2 

RMSE 

(kg/s) R2 

RMSE 

(kg/s) R2 

RMSE 

(kg/s) R2 

RMSE 

(mg/L) 

Pristine 0.56 26879 0.65 727 0.25 356 0.36 8894 

LULC 0.57 30084 0.68 675 0.25 386 0.40  12261 

Te 0.50 28035 0.58 718 0.21 262 0.39  11236 

Original 

WBMsed 0.56 30163 0.72 370 0.26 317 0.55  2274 
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In order to test the sensitivity of the model simulated average global sediment flux to 

some of the important model input variables, we conducted a sensitivity analysis by excluding 

each variable from the model equations. The results in table 4.4 shows that the tested input 

variables have different levels of sensitivities and may lead to increases or decreases in average 

global sediment flux values. The model is more sensitive to variables such as slope and soil 

erodibility and they lead to a considerable decrease in average global sediment fluxes. On the 

contrary, the free parameter in the rainfall-driven erosion equation has much lower sensitivity to 

the model outputs.       

 

Table 4.4. Sensitivity analysis of major variables in WBMsed-ELM model equations 

  Average Global Sediment Flux (kg/s) 

Symbol Variable 
Original 

WBMsed-
ELM 

Simulation 
excluding 

the variable  
Difference Percent 

difference 

𝐿 Lithology 150.06 93.16 56.9 37.92 

𝑃�� Conservation 
Agriculture Factor 150.06 118.09 31.97 21.30 

𝑅h Runoff 150.06 244.24 -94.18 -62.76 

𝜃 Slope 150.06 1564.2 -1414.14 -942.38 

𝑐" 
Free parameter in the 
rainfall-driven erosion 

equation 
150.06 154.15 -4.0 -2.73 

𝑐5 
Free parameter in the 
runoff-driven erosion 

equation 
150.06 138 12.06 8.04 

𝑐F 
Free parameter in the 

transport capacity 
equation 

150.06 67.85 82.21 54.78 

𝐾 Soil Erodibility 150.06 328.81 -178.75 -119.12 

𝐼x BQART glacier 
erosion factor 150.06 140.32 9.74 6.49 

𝐶��L 
Surface cover fraction 
calculated from Leaf 

Area Index 
150.06 178.98 -28.92 -19.27 
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3.3 Human-induced land use change as a driver of river sediment flux 

 

The difference between pristine and LULC experiments quantifies the impacts of 

croplands on sediment flux (Figure 4.5a). The global distribution of croplands across the world 

(Figure 4.5b) corresponds well with the areas that have experienced an increase in soil erosion 

and sediment loads from 1960-2014. In 2015, a total of 18.7 million km2 of croplands were 

recorded in the world which accounts for about 12.6% of the global land area (Thenkabail et al., 

2021). This is a 2% increase from the year 2000. Approximately 0.1 million km2 of cropland are 

lost each year due to soil erosion, which threatens global food production (Pimentel and Burgess, 

2013).  

(a) 

 

(b) 
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Figure 4.5. (a) agriculture-induced average sediment load increase from 1960-2014, (b) 
percentage of croplands in each pixel. 
 
 

Our predicted soil erosion in croplands is 11.9 billion tons per year, for the year 2000, 

which is close to the estimate of ELM-Erosion (7.13 billion tons per year) and within the range 

of the estimate by Doetterl et al. (2012) which is 13.1 ± (6.6) billion tons per year for the same 

year. This shows that WBMsed-ELM successfully reproduces the original model despite its 

simplified land use representation. Increases in sediment fluxes due to agricultural activity are 

largest in countries such as India, USA, China, Russia, Ukraine, Brazil, Argentina, Canada, 

Nigeria, and Indonesia (Figure 4.5). These are also the top 10 leading countries in terms of 

percentage cropland area (Thenkabail et al., 2021). In addition, some parts of Africa, Australia, 

Europe, Central America, and Western Asia also experience high soil erosion and sediment loads 

owing to agricultural activity.  

The Pristine and LULC experimental setups allow us to isolate and quantify the effect of 

human-induced land use changes on global river sediment fluxes during the study period. Our 

results indicate that croplands alone have increased average global river sediment fluxes by 1.4 

billion tons per year between 1960 and 2014, which corresponds to an increase of 63.4%. This is 

nearly an order of magnitude less than the estimate by Van Oost et al. (2007) for global 

agricultural sediment fluxes from croplands (22 billion tons per year). Our estimates correspond 

to an annual average increase of 2.6 million tons per year, only attributable to increased soil 

erosion from croplands in the past half-century, without considering the influence of dams that 

has the contrasting effect and offset much of this increase before reaching the oceans.   
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3.4 Impacts of dams on river sediment fluxes 

Figure 4.6 (a) and (b) show the longitudinal sediment profiles of Missouri and Colorado 

rivers, respectively, constructed using remote sensing sediment flux data (Gardner et al., 2022, 

2023; Moragoda et al., 2023) and simulated sediment flux using the original WBMsed model 

configuration as well as WBMsed-ELM. The remote sensing observed sediment data show that 

sediment loads get replenished downstream after dams at a relatively rapid rate in most 

instances. This is reasonably well represented by original WBMsed, however, WBMsed-ELM 

has not been able to capture this phenomenon well. This difference is due to the different 

parameterization of Te between the two model configurations. WBMsed in its original version, 

calculate the effect of dams in a specific pixel as a (drainage area) weighted downstream fraction 

of all upstream dams, showing an increase in sediment that resembles downstream 

replenishment. In contrast, WBMsed-ELM explicitly routes sediment along the fluvial system 

and ‘traps’ sediment behind dams by reducing the amount transported downstream. The main 

reason for the pattern seen in WBMsed-ELM simulations is that we only implemented the Te, 

but the model currently lacks a representation of sediment replenishment downstream. A method 

to evaluate downstream sediment recovery that can be incorporated into sediment models is yet 

to be developed. Therefore, the lack of a sediment recovery representation has caused the model 

to underperform in the Te experiment, when simulating dam trapping efficiency in this explicit 

way.  
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(a) 

 

(b) 

 

Figure 4.6. Longitudinal profiles of sediment flux in the (a) Missouri river, and (b) Colorado 
river. The colors of the line graphs represent the following data; Grey – remote sensing sediment 
flux (Gardner et al., 2022), Yellow – Pristine experiment, Green – LULC experiment, Blue – Te 
experiment, Red – Original WBMsed model. The vertical colored bars indicate the reservoir 
extents and red dots represent the corresponding dams. 
 

 
It is also evident that WBMsed-ELM does not well represent the natural variability in 

sediment load as the river progresses downstream as shown by the remote sensing data and also 

simulated by the original WBMsed model. This is due to the fact that WBMsed-ELM currently is 

mainly driven by runoff instead of river discharge, as opposed to the original WBMsed. The lack 

of association with river discharge and in-stream sediment processes have made the model 

insensitive to the gradual increase in sediment loads observed in rivers. A routing scheme which 
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uses river discharge to govern downstream sediment transport in the model could resolve this 

issue in the future. 

Declining sediment fluxes have been the observed global signal since the mid-20th 

century primarily owing to dams (Dethier et al., 2022), which is likely the major driving factor of 

changes in river sediment dynamics in the past several decades (Graf, 1999; Gupta et al., 2012). 

Despite the above discussed uncertainties, WBMsed-ELM is a useful tool to provide insights on 

the effect of dams and reservoirs on global river sediment fluxes. Figure 4.7 shows the average 

decline in sediment loads reaching the global ocean that can be attributed to dams and reservoirs 

during the study period, in 756 global river outlets with drainage areas greater than 10,000 km2. 

River outlets with the largest declines are mostly located in North America, Europe, South and 

East Asia, and the Oceania. Our results indicate that dams have reduced the sediment load to the 

ocean by 19.1% only considering large rivers. Previous estimates made using only large rivers 

include Syvitski et al. (2005) which estimated a decrease of 20%, and Vörösmarty et al. (2003) a 

decrease of 30%. 

 

Figure 4.7. Sediment load reduction in 756 global river outlets (>10,000 km2 drainage area) due 
to dams and reservoirs. 
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According to our estimates, the global contemporary suspended sediment flux to the 

global ocean from large river outlets is 0.12 billion tons per year. This is a considerable under-

estimation from previous estimates such as Li et al. (2020) estimate of 12.9 billion tons per year, 

and Cohen et al. (2022) estimate of 15.1 billion tons per year for a similar number of outlets. We 

believe that this underestimation is due to the absence of downstream sediment recovery after 

dams in our model. However, our estimate of modern day sediment flux to the oceans without 

the presence of reservoirs (0.15 billion tons per year) is also much lower than previous estimates 

of 16.2 billion tons per year by Syvitski et al. (2005). Humans are simultaneously increasing the 

river sediment flux through agriculture-induced soil erosion and decreasing this flux through 

sediment retention behind dams. Considering the combined effect of land use changes and 

sediment trapping behind dams, WBMsed-ELM estimates that there is a net global increase of 

6.4% in sediment delivery to the ocean, compared to pristine conditions. Syvitski et al. (2022) 

mentions that between 1950-2010, human activities such as land use changes have increased 

fluvial sediment delivery to the ocean by 215% while concurrently decreasing it by 49% mainly 

due to reservoir trapping. 

 

4. Discussion 

4.1 Model capabilities and accuracy 

Our model simulation and validation shows that WBMsed-ELM is comparable to the 

original WBMsed in its ability to predict the spatial variability of sediment fluxes at the global 

scale. This is despite the still maturing physically-based equations to simulate major river 

sediment processes at a global scale, and input datasets with coarse resolutions and various levels 

of uncertainties. In order to achieve our goal of explicitly simulating soil erosion contribution to 



	 	 135	

river sediment loads in WBMsed, we chose ELM-Erosion by Tan et al. (2021) due to its process-

based equations and equivalent predictive capability compared to the well-tested and widely used 

RUSLE model.  

RUSLE is a relatively simple empirical model for predicting soil erosion, which has been 

successfully used in catchment-scale to global-scale studies (Borrelli et al., 2017). Several soil 

erosion and sediment load models also use empirical USLE, RUSLE or MUSLE (Modified-

USLE) based approaches in them (e.g. PERFECT, CREAMS, AGNPS and SWAT). However, 

for this study, RUSLE was not an ideal model mainly due to its empirical and lumped nature. In 

addition, the comparison between ELM-Erosion and RUSLE has shown that ELM-Erosion has a 

more realistic relationship between soil erosion and topography (i.e. slope). For regions with 

high slope, the RUSLE model has a much stronger erosion response, which may not be realistic 

(Tan et al., 2021). On the other hand, ELM-Erosion employs separate equations for major 

suspended sediment processes (rainfall-driven erosion, runoff-driven erosion and sediment 

transport capacity) thus able to provide an estimate of sediment available for movement by the 

overland flow, whereas RUSLE provides potential soil erosion estimates which may be higher or 

lower than the transport capacity (Borrelli et al., 2021). In addition, WBMsed-ELM offers the 

opportunity to isolate the major human drivers of changes in global river sediment loads due to 

its ability to simulate soil erosion and sediment processes.  

While WBMsed-ELM still needs to achieve better accuracy in terms of global river 

sediment flux predictions, it offers greater capabilities for WBMsed to explicitly simulate (i) 

hillslope soil erosion to represent upland sediment supply to rivers, (ii) more explicit and 

improved representations of anthropogenic factors (i.e. dam construction and land use changes) 

that affect fluvial sediment dynamics, and (iii) process-based soil erosion representations and 
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sediment routing in place of current empirical equations. With the current global context of ever 

increasing human influence on the natural Earth surface processes it is imperative to be able to 

isolate and quantify the impacts of each of the human drivers, which is a capability presented by 

WBMsed-ELM, with its more explicit and improved representation of dam sediment trapping 

and land use changes. In addition, the model configuration of WBMsed-ELM allows us to 

quantify the role played by different surface processes/mechanisms involved in global sediment 

dynamics and sediment delivery to coastal regions. This is much-needed information for 

management of the Earth’s natural capital such as coastal wetlands that protect the land from 

accelerated sea level rise. 

 

4.2 Limitations and future work 

Evidently, the WBMsed-ELM model still has several uncertainties/limitations that may 

be contributing to inaccuracies in upland soil erosion and sediment flux predictions at the global 

scale. Most of these uncertainties are inherent to the original ELM-Erosion model structure and 

data requirements. ELM-Erosion uses a large number of input data layers to produce its outputs. 

Larger number of and more detailed input data could lead to larger uncertainties and biases in the 

predictions and often suffer from error accumulation and over-parameterization. Although the 

ELM-Erosion model is proven to be reasonably accurate, several of these data layers have large 

uncertainties especially at the global scale with relatively coarse resolutions (Tan et al., 2021). 

Therefore, the next steps of model refinements need to consider more simplified approaches for 

sediment flux simulations with considerably lower data requirements. One such uncertainty 

arises from the representation of land use classes in WBMsed-ELM, which is done through pfts 

following the original ELM-Erosion model. These pfts come from the ELM crop model and the 
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ELM-Erosion model has been calibrated using only 10 pfts classes. Therefore, various types of 

crops contributing to high or low erosion may be under-represented in the model. There are also 

uncertainties associated with pft predictions in ELM that may have propagated to WBMsed-

ELM.  

The model equations employed in WBMsed-ELM represent the sediment eroded from 

upland and carried by overland flow to rivers, which is known as wash load. Wash load mainly 

contains very fine particles which are usually in suspension and seldom deposit on the river bed 

(Lamb et al., 2020). However, total suspended sediment load of rivers consists of both wash load 

and suspended bed material load. Suspended bed material load mainly originates from the river 

bed material and interacts with the river bed usually after a period of suspension in the water 

column (Li et al., 2022).  Research has shown that wash load is dominant in most locations. Li et 

al. (2022) and Sadeghi and Singh (2017) have found that the spatially averaged percentage of 

wash load in the total sediment load (including bed load) can be 62.2% and 79.1 ± (11.3) %, 

respectively. Cohen et al. (2022) showed that the original WBMsed model predicts the wash load 

to be 85% of the total suspended sediment load. Thus, future developments may need to include 

incorporating suitable equations to represent in-stream sediment processes.  

The WBMsed-ELM sediment flux is currently driven by runoff and not discharge. This 

may have constrained the model’s ability to simulate the natural variability in river sediment 

loads operated by discharge. Therefore, including in-stream sediment processes and/or 

incorporating discharge into the sediment routing scheme in WBMsed-ELM could overcome this 

challenge. As discussed in section 3.4, the downstream recovery of sediment after dams is 

currently lacking in the model. Future work needs to include a method to characterize this 

phenomenon to improve the model performance. In terms of model validation, the soil erosion 
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component in WBMsed-ELM with the changes that we incorporated, have not been tested 

against observation data. This is due to the lack of comprehensive validation datasets of observed 

soil erosion corresponding to the time period of simulations. Soil erosion validation could 

provide insights into the consequences of using WBMplus runoff, land use simplification, and 

other different input data sources in the WBMsed-ELM model. We also plan to evaluate the 

temporal variability in sediment flux predictions of WBMsed-ELM in addition to the long-term 

average predictions. 

 

5. Conclusion 

In this study, we developed a new soil erosion and sediment flux module within the 

WBMsed global scale hydro-geomorphic model which was named as WBMsed-ELM. This 

allows the model to simulate (i) hillslope erosion and land-based sediment supply to rivers, (ii) 

more explicit and improved representations of anthropogenic factors (i.e. dam construction and 

land use changes) that affect fluvial sediment dynamics, and (iii) process-based representations 

and sediment routing in place of current empirical equations. The goal of developing a more 

physically based sediment model was to (i) get a more accurate representation of river sediment 

processes, (ii) be able to include spatially varying soil properties and surface characteristics to 

represent the complexity of the natural environment, and (iii) better understand the driving forces 

of changes.  

Using this new model, we simulated the individual and combined impacts of croplands 

and dams on river sediment fluxes. The validation of model-predicted sediment fluxes against 

observed data shows similar level of predictive skills with the original WBMsed model, despite 

the still maturing input datasets and physically-based equations in WBMsed-ELM at a global 
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scale. Our results indicate that croplands alone have increased average global river sediment 

fluxes by 1.4 billion tons per year between 1960 and 2014, which corresponds to an increase of 

63.4%. Using 756 large river outlets across the globe (> 10,000 km2 drainage area), WBMsed-

ELM estimated that dams have reduced the average sediment load to the ocean by 19.1% during 

this period. However, the model’s representation of the sediment trapping efficiency of dams 

needs a mechanism to recognize downstream sediment recovery processes, to generate more 

accurate predictions. Due to this, our estimates of the global contemporary suspended sediment 

flux to the global ocean from large river outlets which is 0.12 billion tons per year, is much less 

than previous estimates. Considering the combined effect of land use changes and sediment 

trapping behind dams, WBMsed-ELM estimates that there is a net global increase of 6.4% in 

sediment delivery to the ocean, compared to pristine conditions. Future work will include further 

simplifying the equations used in WBMsed-ELM to reduce the uncertainty associated with input 

data, incorporating suitable equations to represent in-stream sediment processes, incorporating 

discharge into the sediment routing scheme, and expanding the validation process. Overall, the 

WBMsed-ELM model offers several capabilities to explicitly simulate major river sediment 

processes and better represent individual and combined effects of anthropogenic stresses on 

global river sediment dynamics. 
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CHAPTER 5 

OVERALL CONCLUSION 

River sediment plays a fundamental role in the functioning of ecosystems, 

biogeochemical cycles, and geomorphological processes on Earth. Anthropogenic activities such 

as land use changes, water diversions, and dam construction have significantly modified natural 

sediment transport processes in rivers. Robust numerical models of sediment transport can be 

highly valuable in understanding the impacts of these human-induced stresses on global river 

fluxes.  

In this dissertation, I investigated the effects of key anthropogenic modifications of the 

landscape and fluvial systems on sediment flux dynamics in large global rivers. Through a 

detailed review of the literature and an extensive meta-analysis, I found that dry soil has the 

lowest resistance to erosion and thus has a high erodibility, and erosion resistance increases 

(erodibility decreases) with increasing antecedent moisture content until a certain threshold. An 

exemplar relation that could be used to represent the variation in erosion resistance with soil 

moisture content was developed for use in hydro-geomorphic models in Chapter 2. 

In order to better parameterize a key anthropogenic driver of river sediment transport in 

hydro-geomorphic models, a new reservoir trapping efficiency (Te) parameter was introduced in 

Chapter 3. The parameter was developed using a novel high-resolution and spatially continuous 

remote sensing fluvial sediment product. I developed data-driven CONUS and global models to 

predict Te in large-scale hydro-geomorphic models using remote sensing observations of long-

term sediment data in the US. Contrary to the previous estimates in literature, the results of this
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study showed that, large reservoirs can have a wide range of Te values. The global Te model 

developed in this chapter estimated an average global trapping efficiency of 53.5% using 6823 

large global dams. 

To enable the analysis of the key anthropogenic drivers affecting fluvial sediment 

dynamics, I developed a new soil erosion and sediment flux module within the WBMsed global-

scale hydro-geomorphic model (Chapter 4). This new model termed WBMsed-ELM includes (i) 

hillslope erosion and land-based sediment supply to rivers, (ii) more explicit and improved 

representations of anthropogenic factors (i.e. dam construction and land use changes) that affect 

fluvial sediment dynamics, and (iii) process-based representations and sediment routing in place 

of current empirical equations. The validation of model-predicted sediment fluxes against 

observed data shows a similar level of predictive skills with the original WBMsed model, despite 

the still maturing input datasets and physically-based equations in WBMsed-ELM at the global 

scale. The model can benefit from a mechanism to represent downstream sediment recovery 

when simulating the impacts of dams. The WBMsed-ELM model offers several capabilities to 

explicitly simulate major river sediment processes and better represent individual and combined 

effects of anthropogenic stresses on global river sediment dynamics. The results presented in this 

chapter show that croplands alone have increased average global river sediment fluxes by 1.4 

billion tons per year between 1960 and 2014, which corresponds to an increase of 63.4%. Using 

756 large river outlets across the globe (> 10,000 km2 drainage area), WBMsed-ELM estimated 

that dams on the contrary have reduced the average sediment load to the ocean by 19.1% during 

this period. Considering the combined effect of land use changes and sediment trapping behind 

dams during the study period, a net global increase of 6.4% is estimated in the sediment load to 

the global ocean, compared to pristine conditions. 
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Overall, this dissertation provides a comprehensive global outlook on key human factors 

influencing river sediment processes, and presents a robust modeling framework that enables the 

prediction and analysis of sediment fluxes on a global scale in a more explicit and process-based 

manner. The outcomes of this research are envisioned to help guide informed decision making 

and sustainable management of large global rivers, by improving the prediction of the imperative 

global picture. This will help strike a healthy balance between the well-being of the world’s 

precious riverine ecosystem and ever-growing demographic and socio-economic demands.  
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